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Abstract. An important part of surgical training in ophthalmology is 

understanding how to proficiently perform cataract surgery. Operating skill in 

cataract surgery is typically assessed by real-time or video-based expert review 

using a rating scale. This is time-consuming, subjective and labour-intensive. A 

typical trainee graduates with over 100 complete surgeries, each of which 

requires review by the surgical educators. Due to the consistently repetitive 

nature of this task, it lends itself well to machine learning based evaluation. 

Recent studies utilize deep learning models trained on tool motion trajectories 

obtained using additional equipment or robotic systems. However, the process of 

tool recognition by extracting frames from the videos to perform phase 

recognition followed by skill assessment is exhaustive. This project proposes a 

deep learning model for skill evaluation using raw surgery videos that is cost-

effective and end-to-end trainable. An advanced ensemble of convolutional 

neural network models is leveraged to model technical skills in cataract surgeries 

and is evaluated using a large dataset comprising almost 200 surgical trials. The 

highest accuracy of 0.8494 is observed on the phacoemulsification step data. Our 

model yielded an average accuracy of 0.8200 and an average AUC score of 

0.8800 for all four phase datasets of cataract surgery proving its robustness 

against different data. The proposed ensemble model with 2D and 3D 

convolutional neural networks demonstrated a promising result without using 

tool motion trajectories to evaluate surgery expertise. 
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1 Introduction 

Cataract surgery is the most common procedure in ophthalmology which involves the 

removal of the crystalline lens of the eye that opacifies over time which leads to 
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reversible visual impairment and is replaced with an artificial lens [1]. The crystalline 

lens of the human eye refracts light to focus a clear image on the retina.  

 

All ophthalmology residents are trained by faculty surgeons to proficiently perform 

the procedure of cataract surgery and learn the various surgical steps, tools and 

techniques. Although there may be slight variations in the surgical tools and techniques, 

the actual steps of the surgery are fairly universal. A trainee surgeon may display the 

medical knowledge of how to perform the surgical steps; however, intraoperative skills 

using microsurgical instruments, fine dexterity, and microscope control requires 

additional assessment that cannot be based on knowledge alone. 

 

Skill assessment can be performed by analyzing the intraoperative surgical videos 

conducted by the trainee surgeons. Many rating scales established for evaluating 

surgical skills depend on the subjective interpretation and opinion of the faculty 

surgeons appointed to observe the surgery. For example, ICO-OSCAR [12] is a 

validated rating scale where an assessor examines the intraoperative surgery based on 

predefined steps, categories and scale descriptions. The human graders mark the 

performance of the trainee following the assessment criteria; however, some of the 

descriptors can be interpreted in different ways which involve a subjective grading 

component. The implication is that cataract surgical training can be time-consuming, 

labor-intensive, and prone to human error. Thus, there is a need for the objective 

evaluation of technical skills apart from subjective measures.  

  

Video classification algorithms can be applied to efficiently analyze surgical videos 

recorded for educational purposes instead of manual analysis. Convolutional neural 

network (CNN) models have been proven to be effective in identifying actions in videos 

[2][3][4]: this inspires this work to use action recognition models for skill assessment. 

The surgical instruments in microscope videos are tiny compared to objects in public 

video datasets such as UCF-101, where objects appear in an identifiable and larger 

shape. Thus, state-of-the-art video classification models might not perform well in 

evaluating microscope videos. Scholars have tried to perform classification on publicly 

available cataract datasets that were published in the Cataract Grand Challenge 

competitions [5]. Videos in these datasets are well recorded with good lighting 

conditions, lens focus and HD resolution, which is not necessarily possible in locally 

collected real-time surgeries. Authors in [6] have reported that the published surgical 

tool detection models do not generalize well on the datasets collected from local 

hospitals. Thus, the publicly available pre-trained neural network model may not work 

well on raw cataract surgery videos.  

 

Most prior work on surgical video analysis is dedicated to surgical workflow 

analysis and skill assessment by performing automated recognition of instruments and 

surgical phases, tool usage and tool movement with different pre-trained 2D CNN’s 

[6][7][8][14][18][19]. Some earlier work uses 3D CNNs for skill categorization [15][9]. 

Frequency analysis or motion analysis of surgical activities has also been used for 

encoding motion features from surgery videos [16][17]. Although some work (e.g. [14], 
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[19]) investigated real surgery video clips using 2D CNN, the majority of them rely on 

simulated surgery video collected from robotic systems. In summary, few prior 

algorithms were designed using real surgery data and none of the works deployed an 

ensemble of 2D and 3D CNNs for predicting classification scores on raw cataract 

surgery data. Kim et al. performed an objective assessment of technical skills on the 

videos of cataract surgeries using information about instrument usage (position or 

velocity) such as tool trajectories as a representation of a video frame [9]. Alternatively, 

they propose an approach using optical flow encodings to represent video frames. The 

authors reported a higher accuracy of 84% using tool tip velocity information; their 

approach using an optical flow representation computed directly from video data 

achieved an accuracy of only 63%.  To obtain tool motion information, trajectories of 

surgical instruments were determined from crowd-sourced annotations. This 

information, however, requires additional equipment for tool tracking or manual 

annotation. This is not feasible for most skill assessment setups. 

 

This work presents a convolutional neural network model to categorize surgeons as 

novices or experts and thus systematize the process of grading surgical competence in 

raw cataract surgery videos. The proposed model is cost-effective and end-to-end 

trainable. This tool is intended to assist human raters in grading by producing highly 

accurate results.  

 

2 Methods 

2.1 Dataset Preparation and Preprocessing 

 

Fig. 1. Phases in the cataract surgery dataset. Video frames from Capsulorrhexis formation (upper 

left), Phacoemulsification (upper right), Hydrodissection (lower left), and Viscoelastic insertion 

(lower right). 
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The dataset consists of 197 recordings of microscopic video of varying lengths with a 

frame rate of 29 fps and a resolution of 1920 × 1080 recorded during cataract surgery 

[8]. These videos were collected as part of the routine clinical workflow. Only 

recordings that involved multiple surgeons, were, incomplete or failed were excluded. 

There were seven faculty surgeons and five trainee surgeons who participated in the 

study for recording surgical procedures. The dataset has skill-level annotations, 

indicating whether each surgery was performed by a novice or an expert. This was done 

by appointment status. Fourth-year and fifth-year residents, who require direct 

supervision when performing surgery, were considered novices.  Attending surgeons, 

who do not require supervision during surgery, were considered experts. While there 

are 13 phases annotated in the dataset, this work utilizes data from four phases which 

can be considered the most salient steps for identifying operative competence in 

cataract surgery: Capsulorrhexis formation, Phacoemulsification, Hydrodissection and 

Viscoelastic insertion (Figure 1). Several steps are followed to prepare the dataset, as 

described below.  

 

1. Videos of each surgical phase are trimmed from the raw surgery video using 

the phase’s start time and end time indicated in the annotations. 

2. Each video was segmented into video clips with a duration of 16 seconds. Each 

of these video clips is treated as a single data sample representing the original 

phase-wise video. The label of each video clip is based on the appointment 

status of the surgeon who performed the surgery. 

3. Each video is downsampled to 1 fps, such that there are 16 frames in each 16s 

video. 

4. Temporal padding of the nth frame in a video clip is performed so that each 

video sample can be represented using 16 frames only. This is necessary due 

to the varying lengths of each surgical phase across patients. 

5. The 16 frames are extracted from each video snippet and stored as images in 

an individual folder for each video. 

 

Original videos of the expert class were shorter in length leaving fewer snippets in 

the data category than the novice recordings, so the samples were up-sampled by 

applying a random rotation of up to 5 degrees to handle data imbalance. 

 

2.2 Ensemble Model for Skill Assessment 

Model Ensembling is often considered a powerful technique to form a noise-invariant 

and robust model. We deployed an ensemble of two deep 2D CNN-LSTM models and 

one 3D CNN model for performing skill assessment in surgical videos (Figure 2). We 

utilized model ensembling with a basic bagging approach where separate models work 

on the same training set parallelly and the outputs from the last layer of each model are 

concatenated to produce the final prediction scores. In the ensemble model, all the 

models learn different features from the same input, which helps to reduce the variance 

and improve the performance of video classification to a greater extent. The proposed 

ensembling approach is highly inspired by C3D [20] and more precisely T3D [21] who 
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have fused features from both 2D and 3D convolutional networks to design a competent 

video classification model that has outpaced many state-of-the-art models. The first 

model is a two-dimensional CNN model where convolution is applied in a time-

distributed manner. The second model is developed employing the first model as a 

baseline. These 2D CNN models can learn spatial features. We use a shared LSTM 

layer between these two models to analyze the frame-level features temporally. Finally, 

we integrate a simple 3D CNN model with the first two models, designed using 3D 

convolutional layers. 

 

Fig. 2. Ensemble Model ; (a): 2D CNN LSTM, (b): 2D CNN LSTM with Inception V4 

Modules, (c): 3D CNN. 

 

A sequence of 16 frames from each input video is fed to both the 2D CNN-LSTM 

models and the 3D CNN as a separate input. An earlier work uses two separately trained 

networks for modeling spatial and temporal features individually [2]; however, this 

approach needs the optical flow images to be pre-computed and it requires the RGB 

videos to be incorporated with the optical flow images as the input to the models. This 
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strategy has excessive memory needs which is impractical when a large dataset is 

utilized. Therefore, our work does not utilize separately computed optical flow images 

so that the network can be made end-to-end trainable and efficient.   

 

2.3 Basic 2D CNN with LSTM 

This model is designed using time-distributed convolutional layers along with a filter 

size of 3×3 that allows a sequence of frames to be processed by a 2D CNN. The same 

base convolutional block is repeated a few times to deepen the CNN structure (see Fig. 

2(a)). The Dropout layer is associated with each batch norm layer as an advanced 

regularization approach. Features learned from the last convolutional block of this 

model are passed down to the concatenation layer before it is fed to a shared LSTM 

layer for analyzing the temporal aspects.  

 

2.4 2D CNN with Inception V4 and LSTM 

This model is built with some modifications to the first 2D CNN model (see Fig. 2(b)). 

An Inception block is incorporated between each time-distributed convolutional layer 

for performing feature extraction which is inspired by Inception V4 [10]. We have 

utilized the basic inception module, Inception A module and Reduction module from 

Inception V4 which are designed to resolve the issue of computational expenses while 

efficiently learning patterns at various scales using different filters. The output layer 

after the last inception block in Figure 2(b) is concatenated with the output layer from 

the first model. This concatenated output is then fed to a shared LSTM layer.  

 

2.5 3D CNN 

The 3D CNN contains similar convolutional blocks as the first 2D CNN-LSTM where 

3D layers are used instead of 2D layers (see Fig. 2(c)). They are like the 2D CNNs, 

where features from both spatial and temporal dimensions are extracted by performing 

3D convolutions with filter size of 3×3.  

3 Implementation Details 

The proposed model is implemented in TensorFlow on Digital Research Alliance of 

Canada Graham cluster. The author’s thesis explains the finest details about the 

implementation [13]. Greyscale images were used with a resolution of 128 × 128. ReLU 

is used as an activation function while sigmoid activation is used in the output layer 

only. The single LSTM has 64 nodes with a dropout value of 0.2. RMSprop is used as 

an optimizer function with a learning rate of 0.0001 and binary cross-entropy being the 

loss function. The ensemble model was trained end-to-end, and the following parameter 

space was searched: using 100 - 200 epochs, batch sizes of 4, 6 and 8, and a dropout 

probability ranging from 0.2 - 0.3 for the convolution layers.  
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We experimented on three model configurations. First, we use an L2 kernel 

regularizer with a value of 0.001 to the kernel to avoid overfitting. Second, we add 

batch normalization with dropout following all convolution blocks to improve the 

learning mechanism of the model following the idea of Chen et al. [11]. We opted to 

augment the data such that the model could better learn patterns in the data without 

exaggerating the memory requirements. To this end, we compute and apply HOG 

descriptors for image frames to the image sequences. This augments spatial features in 

the frames with minimal extra computation resources. HOG is a feature descriptor that 

emphasizes the shape of any object in a given image and hence augments the spatial 

features in video frames which is crucial for microscopic recordings. 

 

A five-fold trial-out cross-validation strategy was used with the same data partitions 

for all splits (i.e. at each iteration 80% of the data is used for training and validation, 

while 20% of the data is used for testing). Subsequently, we have also performed a 

leave-one-surgeon-out cross-validation strategy and have reported the result. This 

evaluates how well the model generalizes to never-before-seen surgeons. The reported 

accuracies and other performance metrics were averaged over all folds.  

4 Results and Discussion 

The model for surgical skill assessment is trained and evaluated using video data from 

four cataract phases. The model classifies the video data as either expert or novice. 

First, the validation accuracy of the model is computed using Capsulorrhexis data for 

all the model configurations and hyperparameters discussed above. Table 1 illustrates 

the performance of each component of the ensemble. Table 2  shows performance under 

various model configurations. As seen in Table 2, the baseline training accuracy is 

95.0% which is higher than the 77.8% validation accuracy. L2 regularization reduces 

the generalization gap between the accuracy scores. It makes the model more stable and 

reduces the memory requirements during training where the total number of model 

parameters changes from 18.6 million to 12 million. Interestingly, combining batch 

normalization and dropout in the convolution blocks also improved the model's 

performance, and the model performance was further improved by applying HOG 

filters on the image frames.  

Table 1. Scores for all three models 

Model Names 2D CNN 2D CNN- Inception  3D CNN 

Train Acc. 0.9400 0.9571 0.9608 

Valid Acc. 0.7500 0.7819 0.7405 

                                        Table 2. Model scores with different settings 

Approach Baseline L2 Regularizer Batch Norm + Dropout HOG Filter 

Train Acc. 0.9500 0.9681 0.9685 0.9999 

Valid Acc. 0.7777 0.8214 0.8400 0.8900 
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Following these experiments, once the model configuration and hyperparameter 

settings are finalized, the test accuracy is computed for all four phases using the optimal 

configuration of the model. The same model gets trained individually using data from 

each phase following the same optimal configuration. The average classification results 

for all phases are demonstrated in Table 4 as an average over all cross-validation folds. 

The data in all four surgical phases are different as they have different video duration 

and include dissimilar surgical steps and tools. The videos for Capsulorrhexis are on 

average 156.3 seconds while for Phacoemulsification they are 729.5 seconds on 

average. The validation and test accuracy for the other 3 phases were consistent with 

the model accuracy for Capsulorrhexis data  (Table 3). The model showed notable 

results with an average AUC score of 88.00% and sensitivity score of 85.80% over all 

data for all phases (Table 3,4). The consistency in the overall results for all phases 

implies that the model is robust to different types of surgical phases.     

 

                              Table 3. Skill assessment scores on all four phases 

   

              Table 4. Test accuracy for skill assessment on all five folds for all phases  

  

                        Table 5. Skill assessment scores on surgeon-out cross-validation 

 

The result from the surgeon out cross-validation on capsulorhexis data is depicted in 

Table 5. However, the results from the model are not as good as they were for trial-out 

cross-validation in Tables 2, 3 and 4  since the number of surgeons who participated in 

the surgery recordings was only 12.   

 

For further analysis of how the model results can be exploited to assist surgical 

evaluation, the real-time prediction result from a surgical video is depicted in Fig. 3.  

 

Phase Name Train Acc Val. Acc. Test Acc. Sensitivity AUC 

Capsulor. 0.9999 0.8960 0.8100 0.8340 0.8700 

Phacomul. 1.0000 0.9400 0.8494 0.8833 0.9000 

Hydrodiss. 0.9999 0.9072 0.8130 0.8473 0.8820 

Viscoelast. 1.0000 0.9100 0.8300 0.8677 0.8897 

Phase Name Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Avg. 

Capsulor. 0.8700 0.8200 0.8000 0.7900 0.7700 0.8100 

Phacomul. 0.8100 0.8072 0.8000 0.9600 0.8700 0.8494 

Hydrodiss. 0.7760 0.7590 0.9000 0.8000 0.8300 0.8130 

Viscoelast. 0.8200 0.8202 0.8000 0.8300 0.8800 0.8300 

Surgeon 

Id 

A B C D E F G 

Test Acc 0.7502 0.7203 0.7789 0.6917 0.6910 0.7740 0.7423 
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 Fig. 3. Real-time prediction on an unseen video sample identifying Novice 

 

A 147-second video was trimmed into 16-second clips and video duration was 

plotted in the x-axis as 16-second snippets. In Figure 3, it is visible that for the first two 

video clips (video clip duration 0-16s and 17-32s) the prediction score is higher than 

0.5 identifying an expert-level (Expert Score is 1) surgical performance; however, for 

subsequent video clips, the score is within 0.30-0.45 which implies the surgical 

performance during those times was at the novice level (Novice Score is 0). This 

prediction can be utilized to identify exactly at what time the surgeon showed novice-

level proficiency during the surgery, and thus, what parts of the surgery the trainee must 

practice more to achieve proficiency. 

 

The outcome of our work indicates a substantial improvement over earlier results for 

skill assessment. Earlier research work reported a similar accuracy for skill 

classification by utilizing motion trajectories obtained from tool tip positions in the 

surgery videos [9]. However, their video-level accuracy was 63% only. Therefore, an 

average testing accuracy of 82.6% is adequate given the fact that the proposed model 

can be even better than the human rating consistency (which was found to be 71% on a 

separate dataset) [13]. Our model yields reasonable accuracy for skill assessment on 

four different phases on a larger dataset, and it does not need tool trajectories to be 

computed from raw surgeries for predicting operator proficiency. Another skill analysis 

was conducted on our dataset in an earlier experiment using a late supervision approach 

[8]. The highest skill classification accuracy achieved from the earlier work was 63.3%.  

 

One of the primary limitations of this project is the ground-truth annotation for skill 

level. These annotations do not provide fine-grained information about skill level. It is 

also possible that some of the staff or faculty surgeons might not truly be experts, and 

some residents may be very proficient toward the end of their training. Another 

limitation is the small size of the dataset (only seven experts and five novices 

participated). Finally, the model is not designed to predict skill classification scores on 

an entire surgery video. 
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5 Conclusion  

The performance of the ensembled model reveals that the model is effective in 

capturing intraoperative skills in cataract surgeries without human grading input. An 

ensemble of 2D and 3D convolutional networks with different sizes of convolution 

filters can successfully study technical skills in cataract surgeries without using tool 

motion trajectories for evaluating expertise in surgeries. Histogram descriptors turned 

out to be effective for augmenting visual appearance in the data which improved the 

model’s ability to assess surgical proficiency with an increase in accuracy. One of the 

noteworthy achievements of this work is obtaining consistent results from four phases 

of cataract surgery. This work shows the feasibility of deployment as a tool in the 

certification of cataract surgery proficiency, where a trainee has their learning curves 

monitored using the proposed model prior to final proficiency evaluation by an expert 

preceptor. 

 

Future work involves predicting a more granular skill score such as skill level on a 

rating scale (e.g. ICO-OSCAR), collecting data from more unique surgeons and from 

more than one hospital to formulate a more generalized algorithm for surgical skill 

recognition, and developing a video classifier that can predict skill level from an entire 

surgery video. 
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