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Abstract
The task of segmentation is integral to computer-aided surgery systems, as it provides the shape of the
organ and the location of the tools. However, the practical application of precise segmentation methods is
limited due to the need for annotated data. Given the privacy concerns associated with medical data and
the high cost of manual annotation, collecting a large amount of annotated data for training is challenging.
Unsupervised learning techniques, such as contrastive learning, have shown powerful capabilities in learning
image-level representations from unlabeled data. Additionally, compared to pixel-level segmentation labels
for images, classification labels are easier to acquire. In this study, we leveraged classification labels to
enhance the accuracy of the segmentation model trained on limited annotated data. Our method uses a
multi-scale projection head to extract image features at various scales. We then improved the partitioning
method for positive sample pairs to perform contrastive learning on the extracted features at each scale.
This approach effectively represents the differences between positive and negative samples in contrastive
learning. Furthermore, with the features extracted by the multi-scale projection head, our model is trained
simultaneously with both segmentation labels and classification labels. This enables the model to extract
features more effectively from each segmentation target class and further accelerates the convergence speed.
Our method was validated using the publicly available CholecSeg8k dataset for comprehensive abdominal
cavity surgical segmentation. Compared to select existing methods, our proposed approach significantly
enhances segmentation performance, even with a small labeled subset (1%-10%) of the dataset, showcasing
a superior Intersection over Union (IoU) score.
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1 INTRODUCTION

Semantic segmentation of anatomical structures in laparoscopic videos is a vital component in facilitating the development of
novel computer-assisted systems, which are designed to augment surgical precision and support surgeons during operations. The
complexity of this task is exacerbated by the presence of artifacts such as shadows, reflections, and occlusions, as well as the
inherently similar visual characteristics of anatomical structures found in laparoscopic footage. Recent advancements in deep
learning algorithms have shown promising results in the segmentation of anatomical structures in laparoscopic videos1,2.

At present, researchers typically employ Convolutional Neural Networks (CNNs) for medical image segmentation tasks.
A notable contribution in this regard is the U-Net model, introduced by Ronneberger and his team, which has found broad
applications in the domain of medical imaging3.

However, the development and optimization of these advanced technologies are not without challenges. Researchers typically
employ CNNs for medical image segmentation tasks. Firstly, their method of inferring based on the integration of multi-scale
feature information, along with their simple structure, makes them the most common model in segmentation tasks. However,
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the majority of these CNN-based frameworks are heavily reliant on a supervised learning environment, which demands a large
amount of manually annotated data. This is particularly the case for segmentation tasks that require pixel-level annotations,
resulting in an enormous annotation workload and presenting considerable challenges for practical applications. This scarcity
represents a significant barrier to progress, as the absence of sufficiently labeled datasets hampers the training and fine-tuning of
algorithms that are integral to the continual improvement of computer-assisted surgical systems4,1.

In order to improve the accuracy of training models with limited samples, self-supervised learning (SSL) enhances feature
extractors by designing tasks that utilize the samples themselves rather than annotated data. This enables the model to learn
intrinsic features within the samples. Contrastive learning has recently become a prevailing SSL method because of its superior
performance5,6,7. In 2019, the field of machine learning saw significant advancements in contrastive learning methods. In the
context of contrastive learning, the main idea is to compare and contrast pairs of samples in a representation space. The goal is
to learn meaningful representations by pulling similar pairs closer together and pushing dissimilar pairs further apart. MoCo8

was introduced, using a strong augmentation of the same image as a positive sample while treating other images as negative
samples for contrastive learning. MoCo and MoCoV29 introduced a sequence data structure and a memory bank10 to reduce
the computational cost of contrastive learning, using an exponential moving average (EMA)11 for smoother model training. In
the same year, SimCLR12 proposed a learnable projection head13, eliminating the need for a memory bank, and introduced
an improved loss function, significantly enhancing model performance. Later, Bootstrap Your Own Latent (BYOL)14 was
introduced, allowing for reinforcement learning using a single sample as both the positive and negative pair. MoCoV315 further
refined these techniques by incorporating a transformer, significantly improving classification accuracy.

Multi-task learning (MTL) is a method that enables models to learn better representations for each category, which aims
to improve the performance of multiple related tasks by learning them simultaneously. The underlying hypothesis in MTL is
that tasks share some inherent associations that can be leveraged to boost the generalization performance of individual tasks.
In the realm of medical image analysis, MTL has shown promising results by effectively utilizing various forms of auxiliary
information16. One common application of MTL in medical image analysis involves using classification labels for improving
segmentation performance. The central idea is that the auxiliary task of classifying an image (or a region of it) provides an
additional source of gradient during training, which helps to regularize the learning process of the primary segmentation task.
This setup has been shown to improve the robustness of the model against overfitting and often results in better generalization to
unseen data. Particularly in situations where segmentation labels are costly to obtain, the use of classification labels, which are
often easier to acquire, can significantly enhance the segmentation performance17,18.

However, there are still considerable challenges in the task of endoscopic surgical image segmentation. Firstly, in the current
contrastive learning methods, the definition of positive samples is typically an original image and the same image after image
enhancement. This is indeed a very feasible method for dividing positive samples in large-scale multi-class datasets like
ImageNet, but it is not applicable to endoscopic surgical images, because endoscopic surgical images have the following
characteristics: 1. Images of the same category are extremely similar. This is due to the relatively fixed observation angle
in endoscopic surgery, which will not easily change, and the viewpoints of images during the same surgery are almost all
concentrated in the same parts, with similar backgrounds1. The surgical procedures are similar, and the relative positions of
surgical tools and organs are very close. Therefore, it is not accurate enough to simply divide all different images into negative
samples: the images taken during the same surgical stage, using the same instruments to perform the same operation, should
contain similar information. In addition, current contrastive learning methods in training are aimed at classification problems, so
they do not consider features extracted at multiple scales. But in segmentation models, whether it is classic structures like U-Net
and DeepLab19, or transformer-based models like Segformer20, they all use the multi-scale features extracted by the encoder in
the decoder stage through long connections. Lastly, the process of contrastive learning usually includes the pretrain-finetune
stages. This lowers the efficiency of model training. Also, in the finetune stage, due to the characteristics of the segmentation
model, the decoder also contains a large number of parameters. Therefore, training the encoder and decoder separately will
result in the encoder not being able to extract enough features for the decoder to train for the segmentation task.

Accordingly, to address the aforementioned challenges, we propose an innovative training methodology in our research. This
method leverages the intrinsic attributes of endoscopic images and segmentation models, employing a modest set of segmentation
labels together with a wide array of readily accessible classification labels. We redefine the sample pairs in accordance with the
classification and surgical phase labels of the images. The aim of this modification is to facilitate the extraction of similar features
from images with analogous characteristics within the same batch. This strategy can better underscore the differences between
positive and negative samples in contrastive learning, thereby enhancing the model’s performance on smaller training datasets.
To tackle the challenge of multi-scale feature extraction, we introduce a multi-scale projection head (MSPH). This component is
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F I G U R E 1 An example of positive sample pair division. In positive sample pair (a), the two images are taken from frame
252 of VID027 and frame 1984 of VID017 in the Cholecseg8k4 dataset, respectively, in the same phase of preparation, containing
the same types of organs: “Black Background”, “Abdominal Wall”, “Liver”, and “Fat”. In positive sample pair (b), the two
images are taken from frame 196 of VID025 and frame 641 of VID027 in the Cholecseg8k dataset, respectively, in the same
phase of preparation and containing the same types of tools and organs: “Black Background”, “Abdominal Wall”, “Liver”, “Fat”,
“Grasper”, and “Gallbladder”.

designed to extract features from each encoder scale and optimize these features through deep contrastive learning. Moreover,
we integrate the pretraining and fine-tuning processes by utilizing MTL. This simultaneous training for contrastive learning and
segmentation tasks aims to improve model accuracy. To ensure that the encoder can extract more precise category representations,
we incorporate a classification task during the training process. This step allows for a better representation of the differences
between positive and negative samples in contrastive learning, leading to enhanced model performance on small training datasets.
The primary objective of this approach is to improve the segmentation accuracy of models trained on a limited dataset of images
with segmentation annotations. This innovation could significantly decrease the costs associated with image annotation.

In light of the above issues, the summary of novelty is as follows:

• Redefining positive pairs in contrastive learning based on class labels.
• Introducing MSPH for enhanced feature extraction at each scale.
• Implementing MTL to train for contrastive learning, classification, and segmentation tasks concurrently, thereby improving

model accuracy.

2 METHOD

2.1 Class-Wise Positive Pairs Defining

In the context of endoscopic surgery images, surgical procedures typically occur within a confined region. Consequently, when
comparing two surgical images that involve similar tools and organs, they tend to possess highly comparable information.
As depicted in Fig. 1, the semantic content within two images sharing identical classification labels also exhibits substantial
similarity. Nevertheless, in previous contrastive learning tasks, a conventional approach involves defining an original image x
and its augmented counterpart x̂ as a positive sample pair, while considering all other images as negative samples. Undoubtedly,
such an approach may lack precision and specificity in this work.

Therefore, we define the set of positive samples Ω+
i as follows: for all samples { X1, X2, . . . , XN } in the training dataset, along

with their corresponding multi-class labels Y = { yi | i = 1, 2, . . . , N }, where n shows the size of the dataset. If the multi-class
labels yi and yj of two samples are equal, implying that they are images captured during the same stage of the surgical procedure
using the same tools, then these two samples Xi and Xj are deemed as positive samples, and the positive sample pair (Xi, Xj) is
included in Ω+

i . It should be noted that the multi-class labels in this context encompass both the target categories present in the
surgical images and the surgical phase being performed at the time of image capture. During the process of contrastive learning,
we aim for the model’s encoder to extract similar features from positive sample pairs.



4 TAYLOR ET AL.

2.2 Multi-Scale Projection Head (MSPH)

In this research, we pinpointed a significant gap in the realm of contrastive learning tasks, with particular reference to
segmentation models. It was observed that extant studies primarily concentrate on the extraction of high-level semantic features,
often neglecting or underemphasizing the importance of features at intermediate levels.

Given the original architecture of the U-Net model, it facilitates the direct transmission of features extracted at each scale to
the decoder through long-skip connections. This strategy enables the decoder to employ a combination of features from diverse
scales, thereby leading to enhanced segmentation predictions. In previous studies, it has been proven that the introduction of
multi-scale feature contrastive learning is effective in training classification models21.

Inspired by these observations, we put forth a hypothesis that paying attention to full-scale semantic features extracted from
the encoder of the segmentation model, rather than focusing solely on high-level semantic features, is of paramount importance
during the contrastive learning process. We postulate that this multi-scale contrastive supervision approach could potentially
improve the model’s comprehension of the data and enhance its performance.

We formulate a set of single projection heads, represented as G = { gv(·) | v = 1, 2, . . . , L }, which we refer to as the scale-wise
projection head. Each g was defined as a single projection shown in Fig. 2. Assuming the feature maps derived from each scale
of the Encoder are denoted as F = { fv | v = 1, 2, . . . , L }, we can obtain the preliminary features following the projection head,
which are defined as F′ = { f′v | v = 1, 2, . . . , L }. L is the number of layers we used to extract the features by MSPH. The features
garnered from this process retain consistent dimensions across different scales. These projection heads have the capacity to map
the original scale-specific features onto a uniform representation space, thereby enabling us to utilize the features extracted at
different scales more effectively for deep class-wise contrastive learning.

In conclusion, our proposed MSPH module encompasses a suite of projection heads designed to extract features from feature
maps across multiple scales. These extracted features are then harnessed for subsequent deep class-wise contrastive Learning.

2.3 Deep Class-Wise Contrastive Learning

Our novel Deep Class-Wise Contrastive Learning encompasses two primary aspects: contrasting the features obtained from the
MSPH on feature maps at different scales across multiple images and performing multi-class classification with the features
extracted by the encoder across all scales from a single image. In this subsection, we first introduce the contrastive learning
formulation put forth in this study. Traditional supervised contrastive learning typically employs the softmax function as the loss
function22, which can be defined as

Li,+ = –
1∣∣Ω+

i

∣∣ ∑
j∈Ω+

i

log
e(zi·zj)/τ∑B

k=1 Ii ̸=k · e(zi·zk)/τ
. (1)

In this contrastive learning formulation, the set of positive sample pairs of a sample Xi is represented as Ω+
i , and feature vectors

extracted from various samples Xi within the sample set in a minibatch XB are represented as Z, while B stands for the batch
size. The temperature parameter τ manages the magnitude of the loss. This formulation uses e(zi·zk)/τ to assess the dissimilarity
between the feature vectors of two positive sample pairs and aggregates them to calculate the loss value. This method is
commonly used in conventional contrastive learning, where positive sample pairs are typically derived from the same image
through different augmentations, with the aim of extracting identical features.

However, in our proposed contrastive learning task, the positive sample pairs, defined under Class-Wise Positive Pairs,
frequently consist of different images. Consequently, our objective is to extract similar, as opposed to identical, features from
these positive sample pairs. As a result, we use cosine similarity between feature vectors from positive sample pairs as our
measure.

The cosine similarity between two feature vectors, zi and zj, is defined as

S(zi, zj) =
zi · zj

||zi|| · ||zj||
. (2)

Therefore, for the entire set of positive sample pairs Ω+, the overall Contrastive Learning (CL) loss function can be expressed as

LCL
+ (Z) = –

B∑
i=1

1∣∣Ω+
i

∣∣ ∑
j∈Ω+

i

log
eS(zi,zj)/τ∑B

k=1 Ii̸=k · eS(zi,zk)/τ
, (3)
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F I G U R E 2 The structure of the purposed model. Initially, a set of images is collectively inputted into the system. While
some of these images exclusively provide class labels, others supply both class labels and pixel-wise segmentation labels. A
consistent encoder is utilized to extract features from this assortment of images, and a projection head is subsequently applied at
each scale of the feature map to further extract features. Each “proj” in the diagram denotes a “Single Projection Head”, wherein
“Conv2d” signifies a 2D convolution with a stride of (1,1) and a kernel size of (1,1). The input dimension corresponds to the
number of channels present in the feature map at that specific scale, while the output dimension is configurable. The features
derived from distinct images at each scale are employed for contrastive learning. Subsequently, the features extracted at each
scale from the same image are concatenated, and a classification projection head (a fully connected layer) is used to predict the
target class encompassed within the image. Lastly, a decoder model is utilized to infer segmentation masks on the images within
the set that offer segmentation labels. These three tasks are executed concurrently during the training phase. The segmentation
model structure used in this experiment will be detailed in 3.2

where B is the minibatch size mentioned in Section 2.1. The MSPH module extracts features from L scales of feature maps. In
deep class-wise contrastive learning, the feature vectors from positive sample pairs at the same scale are used for contrastive
learning. For a minibatch of B images { X1, X2, . . . , XB }, we apply stochastic data augmentation to each image, resulting in a
batch of B images. Denote Z = { zi | i = 1, 2, . . . , B }where the zn shows the feature extracted by the MSPH for each image in
this minibatch, while zi = { zi,l | l = 1, 2, . . . , L } and zi,l = gl(Xi) is the l-th layer’s projection head outputs. The loss function for
deep contrastive learning (DCL) can be defined as

LDCL
+ (Z) = –

B∑
i=1

1∣∣Ω+
i

∣∣ ∑
j∈Ω+

i

L∑
l=1

log
eS(zi,l,zj,l)/τ∑B

k=1 Ii ̸=k · eS(zi,l,zk,l)/τ
, (4)

where l represents different scales. The Ω+
i is the set of indices of positive samples to each image Xi.

In the classification task, we concatenate the multi-scale feature vectors extracted from the MSPH and employ a fully
connected layer to predict the target classes present in the image. This portion of the process is depicted in the left half of Fig. 2,
where the Classification Proj Head c(·) represents the fully connected layer for the feature vector ui = concat(zi,1, zi,2, . . . , zi,L)
extracted by multi-scale projection heads. The loss function for this part is defined as

Lcls(P, y) = –
B∑

i=1

C∑
j=1

yij log(pij) + (1 – yij) log(1 – pij), (5)

where C denotes the number of target classes, while B stands for the batch size. The variable p symbolizes the predicted
confidence scores for each class, as produced by the classification projection head. p is the output from the classification
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projection head in a minibatch, P = { pi | i = 1, 2, . . . , B } and pi = c(ui), and the pi,j represents the probability that the Xi belongs
to the class j, which pi = { pi,j | j = 1, 2, . . . , C }.

Simultaneously, y corresponds to the ground truth labels for the samples and yi,j represents if the Xi belongs to the class j. The
execution of this classification task ensures that the encoder-derived feature vectors embody an adequate amount of information
that is specific to the target classes.

2.4 Segmentation Learning

During the segmentation learning phase, we employ the decoder structure of U-Net to merge the features extracted at diverse
scales and infer the segmentation masks. To counteract the problem of class imbalance, we utilize the generalized dice loss and
focal loss as loss functions for training our segmentation model23,24.

The generalized dice loss (GDL), a loss function purpose-built for segmentation tasks, effectively manages class imbalance.
Its formula is defined as

LGDL(P, g) = 1 –
2
∑C

c=1 wc
∑O

q=1 pcqgcq∑C
c=1 wc

∑O
q=1 p2

cq +
∑C

c=1 wc
∑O

q=1 g2
cq + ϵ

, (6)

where LGDL(P, g) denotes the Dice loss, C symbolizes the number of classes, and O is the number of pixels in the sample. Denote
the segmentation model as m(·) (in this experiment, the segmentation model was set as a U-Net), and each prediction map for input
image Xi should be denoted as pi = m(Xi). g is the ground truth segmentation mask, while pcq and gcq denote the probabilities of
pixel q belonging to class c in the predicted and ground truth segmentation masks, respectively. P = { pc | c = 1, 2, . . . , C }, and
pc = { pcq | q = 1, 2, . . . , O }. The weight assigned to class c is represented as wc, and ϵ is a small constant incorporated for
numerical stability.

Focal Loss is another loss function we employ, which addresses the challenges of class imbalance and the varying difficulty of
samples. Its formula is defined as

LFocal(P) = –
1
N

O∑
q=1

[
(1 – pcq)γ log(pcq)

]
, (7)

where LFocal(P) symbolizes the Focal loss, and pcq denotes the probability of pixel q belonging to class c in the predicted
segmentation mask. γ is a tunable hyperparameter used to adjust the weight of difficult samples.

We utilize these loss functions as follows during the training of the segmentation model to gauge the discrepancy between the
predicted segmentation mask and the ground truth segmentation mask, thereby guiding the optimization of model parameters.
Therefore, our loss function is defined as

Lall(Z, P, g, y) = αLcls(Pcls, y) + βLDCL
+ (Z) + LGDL(Pseg, g) + LFocal(Pseg), (8)

where α and β are hyperparameters, which were set to β = 0.1 and α = 0.03/L in order to harmonize the losses into a
commensurate scale in this experiment. L represents the number of layers with the projection head added to the encoder. pseg

shows the prediction of the segmentation mask and the pcls is the prediction of the classification task.
In summary, as shown in Fig. 2, we initially extract a number of images from samples with segmentation annotations.

Simultaneously, we randomly select some images from the dataset that includes classification annotations to be used for
comparative learning. Both groups of data use the Unet encoder with MPSH to extract features. The features extracted from the
two groups of data are used for the deep contrastive learning task. At the same time, we concatenate these features and obtain
prediction labels through a classification projection, which is used for the training of the classification task. Finally, the features
extracted from the data with segmentation annotations are input into Unet’s decoder, outputting segmentation predictions for the
training of the segmentation task. It’s important to note that the two groups of data share encoder weights, and these three tasks
are conducted concurrently.
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3 EXPERIMENTS

3.1 Dataset

We validated our proposal on the CholecSeg8k dataset4. The CholecSeg8k consists of 8080 laparoscopic images, each of the
size 854 × 480 pixels, captured from 17 cholecystectomy surgery video clips. These images, originally based on the Cholec80
dataset25, have been collected and annotated specifically for segmentation tasks. We split the training and test set by video
VIDs. VID12 and VID52 were always used as the test set while the remaining data was utilized three times. We excluded
some rarely occurring classes and conducted segmentation experiments on a reduced set of 8 classes: “Black Background”,
“Abdominal Wall”, “Liver”, “Fat”, “Grasper”, “Connective Tissue”, “Blood”, ’L-hook Electrocautery”, “Gallbladder’, and “Liver
Ligament”. The multi-class labels are derived from Cholecseg8k4, while the phase labels are obtained from Cholec8025 because
the images in CholecSeg8k are a subset of Cholec80. We used the full training set and validation set for the classification task
and contrastive learning task. Only a small part of the dataset (1%-10%) was used during the segmentation model training.

3.2 Experimental Settings

3.2.1 Model Definition

We used U-Net3 as the segmentation model for all the experiments. U-Net is a traditional framework with an encoder-decoder
structure designed for segmentation tasks, where the encoder can be most of the representation learning backbones, such as
attention-based backbones26. In our experiments, we utilized a five-layer U-Net, with the latest 3 layers undergoing deep
supervision for contrastive learning, so the number of multi-scale projection head layers L = 3. We conducted experiments
utilizing the parameters employed for training the U-Net architecture. The channels of the U-Net were set as 32, 64, 128, 256,
512, and the length of the feature extracted from each projection head was set as 128.

3.2.2 Data Augmentation

In line with related research27, we implemented data augmentation during the training phase. Images were resized to dimensions
of 427×240 pixels for the CholecSeg8k dataset, and a random scaling factor ranging from (-0.1, 0.1) was applied to the input. To
inject greater variation into the input frames, we performed Gaussian blurring using kernel sizes of 3, 5, and 7 as the maximum
Gaussian kernel size for blurring the input image, and for each kernel size, the sigma was set as 0.8, 1.1 and 1.4. We performed
image flipping with a probability of 0.5. The images used for training were subsequently cropped randomly to a size of 256 ×
256 pixels.

3.2.3 Method Training and Evalutaion

Throughout the training process, the batch size was maintained at 200, and each projection head at every scale extracted features
with a length of 128. In the loss function, γ = 2, τ = 0.0721. The ϵ = 0.00001 while the class number is C = 8 and the batch size
N was set as 60. The α and β were set as 0.1 and 0.03/L. During the inference phase, a sliding window strategy was adopted for
segmentation, with a window size of 256 x 256 pixels. The overlay parameter was set to 0.25, indicating a 25% overlap between
adjacent windows. For all experiments, Adam with decoupled Weight decay (AdamW)28 optimizer was employed with an initial
learning rate set at 0.01. To optimize the training process, we utilized a ReduceLROnPlateau strategy to dynamically adjust the
learning rate based on the model’s performance on the validation set. The training epoch for CholecSeg8k is set to be 200 for
each percentage of labeled data. Eight NVIDIA A100 80G were used for conducting experiments. The evaluation was based on
class-wise IOU. We used VID12 and VID52 from CholecSeg8k as the test set while the remaining 90% of the data was utilized
for 3 times validation. We conducted experiments from 1% budget to 10% with a step of 5% on the training set, performed
validation on the validation set during cross-validation, and evaluated the model on the test set.
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T A B L E 1 Class-wise IoU from 1% to 10% labeled data on CholecSeg8k. Results were averaged from 3 runs. The best
performance is denoted using bold, and we also mark the best IoU scores for each class at each sample size with underscores.
“Ours DCL” refers to the segmentation model training that utilized deep contrastive learning. “Ours, cls” signifies the segmentation
model training experiment where multi-level features were classified via a class-wise projection head. “Ours DCL+cls” designates
the experiment where both classification and contrastive learning were employed for segmentation model training.

Samples Background Abdominal
Wall Liver Fat Grasper Connective

Tissue
L-hook

Electrocautery Gallbladder

Random 3 1% 0.953 ± 0.004 0.519 ± 0.009 0.442 ± 0.036 0.761 ± 0.005 0.157 ± 0.006 0.007 ± 0.009 0.032 ± 0.005 0.241 ± 0.021
5% 0.926 ± 0.034 0.664 ± 0.052 0.501 ± 0.045 0.796 ± 0.024 0.326 ± 0.112 0.265 ± 0.063 0.310 ± 0.123 0.360 ± 0.078
10% 0.941 ± 0.008 0.612 ± 0.034 0.461 ± 0.023 0.767 ± 0.004 0.226 ± 0.042 0.091 ± 0.120 0.187 ± 0.132 0.335 ± 0.038

SimCLR 12 1% 0.905 ± 0.012 0.482 ± 0.007 0.431 ± 0.023 0.742 ± 0.004 0.188 ± 0.030 0.040 ± 0.027 0.200 ± 0.057 0.210 ± 0.016
5% 0.901 ± 0.008 0.558 ± 0.018 0.464 ± 0.023 0.762 ± 0.013 0.303 ± 0.014 0.009 ± 0.006 0.328 ± 0.017 0.324 ± 0.012
10% 0.932 ± 0.002 0.633 ± 0.015 0.403 ± 0.008 0.780 ± 0.005 0.311 ± 0.030 0.342 ± 0.061 0.311 ± 0.008 0.393 ± 0.027

Ours DCL 1% 0.952 ± 0.005 0.542 ± 0.048 0.519 ± 0.017 0.755 ± 0.000 0.154 ± 0.020 0.096 ± 0.071 0.128 ± 0.148 0.252 ± 0.019
5% 0.953 ± 0.003 0.606 ± 0.066 0.505 ± 0.038 0.797 ± 0.018 0.300 ± 0.092 0.246 ± 0.139 0.264 ± 0.188 0.374 ± 0.111
10% 0.936 ± 0.004 0.631 ± 0.024 0.484 ± 0.007 0.792 ± 0.008 0.310 ± 0.059 0.305 ± 0.098 0.420 ± 0.059 0.421 ± 0.033

Ours cls 1% 0.955 ± 0.000 0.534 ± 0.034 0.494 ± 0.019 0.773 ± 0.016 0.192 ± 0.004 0.053 ± 0.047 0.001 ± 0.001 0.262 ± 0.028
5% 0.925 ± 0.013 0.576 ± 0.057 0.444 ± 0.014 0.775 ± 0.022 0.245 ± 0.089 0.182 ± 0.079 0.356 ± 0.092 0.320 ± 0.076
10% 0.945 ± 0.005 0.657 ± 0.025 0.485 ± 0.016 0.796 ± 0.019 0.341 ± 0.031 0.400 ± 0.133 0.417 ± 0.064 0.458 ± 0.023

Ours DCL+cls 1% 0.952 ± 0.006 0.614 ± 0.034 0.498 ± 0.019 0.762 ± 0.005 0.178 ± 0.005 0.060 ± 0.035 0.137 ± 0.019 0.287 ± 0.017
5% 0.944 ± 0.012 0.624 ± 0.023 0.438 ± 0.035 0.798 ± 0.004 0.296 ± 0.070 0.336 ± 0.031 0.338 ± 0.046 0.365 ± 0.027
10% 0.948 ± 0.013 0.638 ± 0.019 0.485 ± 0.008 0.791 ± 0.009 0.407 ± 0.016 0.404 ± 0.042 0.405 ± 0.032 0.447 ± 0.030

3.3 Result

3.3.1 Comparative Studies Using 1-Stage Methods

We conducted comparative studies using various contrastive learning methods. The studies included: (1) U-Net with Random
Initialization3, which is a U-Net model trained from scratch, and (2) SimCLR12, adapted from contrastive learning for natural
image classification tasks. SimCLR employs strong random transformations to define positive pairs and trains the encoder
model using a contrastive loss. To validate the effectiveness of our proposed modules, we set up three experiments tailored
to our techniques. The “Ours DCL” experiment emphasizes training the segmentation model using deep contrastive learning.
The second experiment, dubbed “Ours, cls”, targets the training of a segmentation model that classifies multi-level features via
a class-specific projection head. Finally, the “Ours DCL+cls” experiment combines both classification and deep contrastive
learning techniques for training the segmentation model. Results are presented in Table 1 and Fig. 3.

3.3.2 Comparative Studies Using 2-Stage Methods

In addition to the primary experiments, we compared our approach with certain 2-stage contrastive learning methods to
demonstrate the efficacy and generalizability of our proposed method. These strategies generally pre-train the encoder with
unlabeled data and then fine-tune it using labeled data. The methods include: (1) SimCLR 2-stage12, which employs SimCLR to
pre-train the U-Net encoder and subsequently fine-tunes the U-Net using labeled data, and (2) BYOL14, which utilizes a single
sample as both the positive and negative pair for pre-training the U-Net encoder. The outcomes are available in Table 2. For
comparison, we structured two experiments around our techniques. The “Ours DCL+cls” method amalgamates both classification
and deep contrastive learning during the encoder’s pre-training phase. Serving as the ablation study, the “Ours DCL” approach
harnesses the MSPH module along with our unique definition of positive pairs to pre-train the encoder. The results indicate
that our methodology delivers outstanding segmentation performance across multiple targets, substantiating the prowess of our
approach.

3.4 Disscussion

In the majority of categories, methods incorporating MSPH and Deep Class-Wise Contrastive Learning demonstrated superior
performance, as evidenced in Table 1. It is clear that for categories with a higher frequency of occurrence, such as the background
and abdominal wall, the improvements offered by our method are marginal compared to random selection. However, for
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Ground Truth SimCLR Ours, cls

OursOurs, DCLRandom

F I G U R E 3 Visualization of the segmentation results on CholecSeg8k using 10% samples from the training set. Different
colors indicate different classes. “Ours, DC” shows the results of multi-task training using only contrastive learning without
the classification projection head. “Ours, cls” shows the results of multi-task training using only the classification projection
head. “Ours” presents the results from using the class-wise positive pairs defining method mentioned in section 2.1 to divide the
sample pairs and training with the deep class-wise contrastive learning method.

categories with lower occurrence frequencies, such as clamps, connective tissues, and L-hook electrosurgery, our approach
delivers substantial advancement. This is mainly attributable to our method’s capability to incorporate images with solely
classification labels for contrastive learning, which allows us to optimize the encoder and the segmentation task simultaneously.
This strategy enables the encoder to capture more similar features from images within the same target category. Simultaneously,
through a class-wise projection head, we aim to guide the encoder to place greater emphasis on the extraction of features related
to the target objects in our segmentation task.

Fig. 3 effectively demonstrates this point. In the sample image, related methods struggle to distinguish between connective
tissue and gallbladder due to their high similarity and the limited sample size, often leading to the incorrect categorization
of Connective Tissue. By incorporating a multi-scale projection head for deep contrastive learning, the accuracy of object
boundaries has improved. However, it is evident that the amount of target information within each image is still not sufficiently
explicit. However, by integrating the classification projection head, our encoder is able to differentiate between the features
of Connective Tissue and Gallbladder. This issue is prevalent in the segmentation of endoscopic video images, a challenge
that is widely recognized within the field. As evidenced in the relevant literature1, some researchers have relied solely on the
U-Net architecture for the segmentation task. In the absence of contrastive learning methodologies, and owing to the relatively
small volume of training samples, the model can easily misidentify gallbladder structures and connective tissues. Despite the
segmentation being imperfect in some pixel areas, our method can successfully segment these two closely related targets.

Furthermore, when compared with related methods, the results illustrate that approaches like SimCLR might achieve minor
improvements with limited data (e.g., less than 1% of the entire dataset) due to their ability to acquire a few target features
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T A B L E 2 The Class-wise IoU by fine-tuning the U-Net using 5% of the labeled data. Results are averaged across 3 runs.
The best performance is denoted using bold and under scores

Background Abdominal
Wall Liver Fat Grasper Connective

Tissue
L-hook

Electrocautery Gallbladder

SimCLR 2-stage 12 0.921 ± 0.012 0.653 ± 0.005 0.528 ± 0.021 0.773 ± 0.013 0.250 ± 0.020 0.206 ± 0.038 0.360 ± 0.021 0.389 ± 0.012
BYOL 14 0.916 ± 0.015 0.651 ± 0.027 0.520 ± 0.025 0.776 ± 0.011 0.250 ± 0.014 0.205 ± 0.037 0.359 ± 0.040 0.419 ± 0.018

Ours DCL 0.933 ± 0.006 0.657 ± 0.034 0.522 ± 0.010 0.779 ± 0.001 0.252 ± 0.015 0.219 ± 0.037 0.354 ± 0.026 0.413 ± 0.050
Ours DCL+cls 0.924 ± 0.005 0.659 ± 0.022 0.519 ± 0.015 0.779 ± 0.014 0.266 ± 0.008 0.212 ± 0.026 0.368 ± 0.032 0.407 ± 0.024

via contrastive learning across the entire dataset. However, as the volume of data used for training progressively increases,
it becomes evident that the features learned by these methods do not significantly assist the training process. This is mainly
because these methods can only generate positive sample pairs from a single image, thereby overlooking the similar semantic
information contained within different images in laparoscopic surgery. This reaffirms our proposition in Section 2.1, which states
that defining positive sample pairs as images with identical labels and evaluating the features extracted from these pairs with a
cosine similarity function is beneficial. Ablation studies further reveal that during the contrastive learning process of positive
sample pairs, the incorporation of a classification task can enhance the correlation between the features extracted by the encoder
and our target categories, thereby boosting the accuracy of the overall segmentation task.

In order to substantiate the efficacy of our proposed novel positive sample pair partitioning method and the MSPH module, we
orchestrated an additional experiment: initially, the encoder part was trained using a contrastive learning approach, and then the
weights of the encoder were frozen. Following this, finetuning was performed using 5% of the original dataset that contained
segmentation labels. The results are elucidated in Table 2. In this context, we employed the SimCLR and BYOL methods as
comparative experiments. From the outcome, it is discernible that our approach generally outperforms traditional methodologies,
especially in enhancing smaller target segmentation, where the improvements are more pronounced. This substantiates our
hypothesis that, within datasets like laparoscopic surgical video images where inter-image similarity is high, utilizing images
with analogous features as positive sample pairs proves to be more proficient in extracting generalized target features compared
to using a single image as a positive sample pair. Concurrently, when classification labels are leveraged as auxiliary, the extracted
features for various targets are more precise, imparting the model with increased robustness.

4 CONCLUSION

In this study, we implemented several specific improvements to the process of training an endoscopic surgery image segmentation
model with limited samples. Given the scarcity of samples, we designed a multi-task training method grounded in contrastive
learning to maximize the utilization of available data. The strength of this approach lies in its ability to optimize the features
extracted by the model’s encoder. Since image classification labels are more readily available than segmentation labels, we
utilized the model’s classification labels to distinguish between positive sample pairs, facilitating contrastive learning. As these
positive pairs do not stem from the same image, we incorporated the cosine similarity function to assess the similarity of features
extracted from the positive samples. This method ensured that the encoder could accurately extract the features of the target
object during contrastive learning. To enhance model accuracy, we used classification labels to categorize the features extracted
from the encoder. Experiments conducted on the CholecSeg8k dataset have confirmed the effectiveness of these improvements.

• Due to the use of contrastive learning in the training structure, this method is significantly slower than direct training.
Moreover, considering the training speed, we did not adopt the EMA approach to differentiate the encoder. Since our method
divides positive sample pairs within the same minibatch for contrastive learning, a large batch size is required to provide a
sufficient number of positive sample pairs. If we introduce a memory bank or similar feature storage for contrastive learning,
it may alleviate this problem.

• The categories in the dataset are not diverse enough. The majority of annotated samples provided in the CholecSeg8k dataset
only exist in the preparation phase, while the sample size for other stages of surgery is extremely insufficient. In subsequent
experiments, manually annotating sample pairs or expanding labels through active learning might be a very effective approach.

• This method still requires a large number of manually annotated classification samples, which can increase annotation costs.
Therefore, utilizing some self-supervised learning methods that can extract sufficient information from the image itself for
segmentation, such as MAE29, SimMIM30, would be a promising strategy.
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In future work, we aim to address the following:

• Optimize the contrastive learning training structure to accelerate the process.
• Increase the variety of surgical stages in our dataset through active learning or manual annotations.
• Explore self-supervised learning methods to lessen the need for manually annotated classification samples, thus reducing

annotation costs.

Through these advancements, we seek to refine our endoscopic surgery image segmentation model.
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