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Abstract
This paper focuses on a new and challenging problem related to robotic instrument segmentation. We aim
to learn a generalizable model from distributed surgical datasets with various imperfect annotations for in-
strument segmentation. Under practical conditions, curating a large-scale surgical dataset for centralized
learning is usually impeded due to data silos and privacy issues. Besides, local clients, such as hospitals
or medical institutes, may hold datasets with a diverse array of imperfect annotations. These datasets can
include scarce annotations (a large portion of samples are unlabeled), noisy labels prone to errors, and
scribble annotations with less precision. Federated learning (FL) has emerged as an attractive paradigm for
developing statistical models with these locally distributed datasets. However, its potential in instrument
segmentation has yet to be fully investigated. Moreover, the problem of learning from various imperfect an-
notations in an FL setup is rarely studied, even though it presents a more practical and beneficial scenario.
In this work, we rethink instrument segmentation under such a setting. We propose an effective FL frame-
work where local clients utilize their imperfectly annotated data to train local models while a central server
carries out model updating and aggregation to coordinate these clients to prepare a global model. We simu-
lated this novel problem setting with an assumption that each client owns a single type of annotation (scarce,
noisy, or sparse annotation) and conducted validation using the EndoVis17 dataset. Our method presented a
potential solution for this issue. Notably, our approach surpassed centralized learning under various imper-
fect annotation settings. Our method established a foundational benchmark, and future work can build upon
it by considering each client owning various annotations, aligning closer with real-world complexities.

K E Y W O R D S
robotic instrument, segmentation, imperfect annotations, federated learning

1 INTRODUCTION

Robust and accurate surgical instrument segmentation serves as the cornerstone for potential applications such as instrument
tracking and augmented reality within the domain of robotic minimally invasive surgery. Deep learning-based methodologies,
especially the deep convolutional neural networks, have been state-of-the-art solutions for this task, driving a series of significant
advancements in this field1,2.

Conventionally, establishing a high-performing, generalizable model for instrument segmentation is contingent on centralized
learning3,4,5. This process necessitates the collection of large-scale surgical videos/sequences for training. However, practical
implementation is often limited due to stringent privacy and confidentiality-related regulations that restrict the sharing and
collecting sensitive surgical data6. In light of these limitations of centralized learning, federated learning (FL) is emerging as
an appealing alternative, enabling multiple clients or institutes to collaboratively prepare a global model without sharing local
datasets. However, the application of FL in the context of instrument segmentation lacks exploration.

Moreover, the problem of learning from various imperfect annotations7 in an FL setup is hardly investigated, even though it
presents a more practical and advantageous scenario. For instance, due to the costly and time-consuming annotation process,
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F I G U R E 1 Illustration of various annotations and comparison of segmentation paradigms with various annotations. Note
that endoscopic images are from EndoVis171. (a) Original image. (b) Ideal annotation (ground truth). (c) Scarce annotations,
where a large of images have no annotation. (d)-(e) Noisy annotations, where we simulate two types of noisy labels, i.e., over-
annotation of foreground using dilation operation and under-annotation of foreground using erosion operation. (f) Scribble
annotation, where only a small part of foreground (in red) and background (in green) pixels are annotated, leaving a large portion
(in black) unlabeled. Note that we further dilate the skeleton lines for better visualization. (g) Fully-supervised segmentation
utilizes ideal annotations for learning. (h) Semi-supervised segmentation leverages a combination of a small proportion of
labeled data and a large quantity of unlabeled data. (i) Noisy label-supervised segmentation aims to minimize the adverse
impact of label noise during model training. (j) Scribble-supervised segmentation capitalizes on sparse supervision signals.

a large portion of images might remain unlabeled at some clients8,9, resulting in scarce annotations. Some clients might then
resort to using weak annotations, e.g., scribble annotations10,11. In addition, noisy annotations are sometimes unavoidable due
to inter-observer variability, as the annotation process is inherently subjective12,13. Examples of the ideal, scarce, noisy†, and
scribble‡ annotations are illustrated in Fig. 1(a) through Fig. 1(f). As local clients could face various imperfect annotations,
this complexity implies that local clients need to maximally utilize these imperfect annotations to contribute an effective local
model for global model preparation.

To this end, we start a first attempt to study a more challenging problem related to instrument segmentation. We aim to learn
instrument segmentation from distributed surgical sequences with various imperfect annotations. Instrument segmentation in
real-world scenarios inherently introduces complexities, particularly when each client possesses multiple annotation types.
These diverse annotations carry unique challenges and demand tailored strategies, elevating the intricacy of the problem. In our
study, we proceed with an assumption that each client has just one type of annotation. Such an assumption allows us to focus on
a specific and rudimentary condition of this problem. By tackling the challenge from this perspective, we can explore a potential
solution and provide an initial baseline. Subsequent research can expand on this foundation by gradually integrating additional
complexities, such as accommodating multiple annotation types per client, to strive for a more comprehensive approach that
better reflects real-world scenarios.

From the above perspectives, we propose a practical FL framework to handle this problem and demonstrate a potential
solution. Specifically, we adopt existing mainstream methodologies, e.g., semi-supervised learning15, noisy-label learning13,
and scribble-supervised learning16, and show that these specific methods can be integrated to our framework to endow local

† We simulate noisy annotations with dilation and erosion operations, following the work 12.
‡ We simulate scribble annotations by skeletonizing 14 the ground truth.
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clients the ability to deal with imperfect annotations. Furthermore, we maintain a central server to coordinate these local clients
to prepare a generalizable model using these distributed datasets with imperfect annotations. Our contributions are as follows:

• We reevaluate instrument segmentation from the perspective of a new and more challenging problem setting. We aim to
create a generalizable model for instrument segmentation using distributed datasets with imperfect annotations.

• We present a novel and effective framework to address this new problem by unifying semi-, noisy label-, and scribble-
supervised segmentation and FL. We show that the careful integration of existing advanced techniques can provide
successful solutions for instrument segmentation, taking into account both data availability and imperfect annotations.

• We conduct experiments with the EndoVis17 dataset1 to present our method’s efficacy. Our approach surpasses centralized
learning under various imperfect annotation settings, underscoring its potential to tackle this innovative challenge. Our
method can serve as an initial baseline in addressing this problem.

2 RELATED WORK

In this paper, different from existing instrument segmentation methods, we unify semi-, noisy label-, and scribble-supervised
segmentation and FL to address instrument segmentation while considering data privacy and imperfect annotation-related
issues, leading to a novel and more challenging application. In the following, we review related literature on instrument
segmentation, learning segmentation from imperfect annotations, and FL.

Instrument segmentation. Instrument segmentation in robotic surgery1,17 plays an important role in enhancing surgical
procedures. Over the past few years, it has attracted increasing interest, particularly with the advent and rise of robotic platforms
such as da Vinci®. Deep convolutional neural networks (CNNs) have emerged as the dominant solutions, surpassing traditional
schemes by delivering automatic and highly accurate results. There is a line of advanced CNN models2,3,4,5,18,19,20 showing
promising performance in this task. Nevertheless, most existing methods are introduced under the centralized learning setting,
where a large-scale dataset is collected for training. In reality, data centralization is often limited due to privacy-related issues,
especially for medical data like surgical sequences. By contrast, the approach of learning from distributed datasets, which aligns
more with practical scenarios, remains less explored. In our work, we revisit the challenge of instrument segmentation within
a practical FL setting.

Learning segmentation from imperfect annotations. In real-world scenarios, image datasets are often accompanied by
imperfect labels, such as scarce, noisy, and scribble annotations7. The quality of annotations is a crucial factor influencing
the performance of learned models, making it imperative to leverage these inferior annotations. For instance, semi-supervised
segmentation8,9,21 endeavors to make the most use of unlabeled data. Scribble-supervised segmentation10,11 makes an effort
to learn a model from sparse supervision signals. Besides, other efforts like designing a noise-tolerance loss function13 and
correcting noise labels during training12 have been studied to handle label noises. Fig. 1(g) through Fig. 1(j) show the compar-
ison among different segmentation diagrams. Although numerous attempts have been made to deal with inferior annotations,
handling various imperfect annotations simultaneously within a more pragmatic FL framework is more practical but remains
unexplored.

Federated learning. Federated learning (FL)22,23,24 is a machine learning mechanism that enables multiple clients or devices
to collaboratively learn a statistical model while keeping their data localized, effectively addressing privacy concerns in sensitive
domains like healthcare. Despite the widespread application of FL in medical imaging25,26,27, learning from various imperfect
annotations remains unexplored in FL, where we need to tackle the challenges related to imperfect annotations of local datasets.
We posit that investigating this problem is crucial, as it presents a practical and more challenging situation.

3 METHOD

3.1 Overview

Assuming there are K clients, denoted as
{

Ci
}K

i=1
, where each client Ci holds a private dataset. Ideally, each dataset is

expected to contain images and the corresponding ideal annotations (ground truth). However, in reality, local datasets may
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F I G U R E 2 Flowchart of proposed framework. This illustration depicts our solution to the novel and practical problem
regarding data silos and imperfect annotations within instrument segmentation from surgical sequences, with an assumption that
each local client only possesses a dataset with one type of annotation. For clarity, we feature four local clients

{
Ci
}4

i=1
alongside

a central server Q. Local clients
{

Ci
}4

i=1
signify distinct data repositories, and their datasets reflect diverse annotations, i.e.,

ideal annotations (ground truth), scarce annotations (a large portion of images are unlabeled), noisy annotations, and scribble
annotations. Local clients adopt specific strategies, i.e., fully-, semi-, noisy label-, and scribble-supervised learning, to prepare
their respective local models

{
li
}4

i=1
by making use of their distinctive datasets I1 =

{
XI

1, YI
1

}
, S2 =

{
XS

2, YS
2, X̄S

2

}
, N3 ={

XN
3 , YN

3

}
, and W4 =

{
XW

4 , YW
4

}
. The central server Q manages model aggregation and updates with the FedAvg scheme22,

guiding local clients toward a generalizable global model g.

come with imperfect annotations, such as scarce, noisy, and scribble annotations. Our goal is to learn a generalizable model
with these distributed datasets with imperfect annotations.

In our study, we represent Ii =
{

XI
i , YI

i
}

as the local dataset consisting of images XI
i and the corresponding ideal annotations

YI
i . For the local dataset with scarce annotations, namely, the dataset comprising a small part of labeled images and a large part

of unlabeled images, we denote it as Si =
{

XS
i , YS

i , X̄i
S
}

, where XS
i and YS

i represent the labeled images and the corresponding

ground truth, and X̄i
S indicates the unlabeled images. We further represent Ni =

{
XN

i , YN
i
}

as the local dataset containing
images XN

i and the related noisy annotations YN
i , Wi =

{
XW

i , YW
i
}

as the local dataset comprising images XW
i and the related

scribble annotations YW
i .

Following the spirit of FL, we maintain a central server Q to coordinate these local clients
{

Ci
}K

i=1
and their local models{

li
(
·, wl

i
)}K

i=1
to develop a global model g (·, wg), where w denotes model weights.

The flowchart of our framework is depicted in Fig. 2. For simplicity and ease of understanding, four local clients
{

Ci
}4

i=1

and one central server Q are illustrated. Within the framework, local clients
{

Ci
}4

i=1
train their respective local models

{
li
}4

i=1

using their private datasets I1 =
{

XI
1, YI

1

}
, S2 =

{
XS

2, YS
2, X̄S

2

}
, N3 =

{
XN

3 , YN
3

}
, and W4 =

{
XW

4 , YW
4

}
. These datasets come

with various annotations, i.e., ideal annotations (ground truth), scarce annotations (a large part of samples remain unlabeled),
noisy annotations, and scribble annotations. The central server Q orchestrates the process of model aggregation and updates,
coordinating local clients to develop a generalizable global model g.
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3.2 Local training with various annotations

Learning from ideal annotations. For a client Ci holding a dataset Ii =
{

XI
i , YI

i
}

that has ideal annotations (ground truth),
such as client C1 in Fig. 2, we can simply perform fully-supervised learning to train the local model. During this process, we
input images XI

i to the local model, and obtain probability maps ŶI
i . We can then calculate the supervised loss, e.g., the cross-

entropy (CE) loss Lce

(
ŶI

i , YI
i

)
between the probability maps ŶI

i and the ground truth YI
i . Thus, in this setting, the training

objective LI
i can be expressed as

LI
i = Lce

(
ŶI

i , YI
i

)
= –

J∑
j=1

YI
i,j log

(
ŶI

i,j

)
, (1)

where J is the number of classes, and YI
i,j and ŶI

i,j represent the j-th channel of the ground truth YI
i and probability maps ŶI

i .
Learning from scarce annotations. A local client Ci such as C2 in Fig. 2 may hold a dataset Si =

{
XS

i , YS
i , X̄S

i
}

with scarce
annotations. We employ the well-regarded mean-teacher (MT)15 framework to train the local model li

(
·, wl

i
)
. Specifically, we

sustain an additional teacher model li
(
·, w̄l

i
)

alongside the local model. li
(
·, w̄l

i
)

shares the same architecture as li
(
·, wl

i
)

but
maintains the exponential moving average (EMA) weights of li

(
·, wl

i
)
. During training, for the labeled data, images XS

i are fed
into li

(
·, wl

i
)

to get the probability maps ŶS
i , and the CE loss Lce

(
ŶS

i , YS
i

)
is then calculated between ŶS

i and the ground truth
YS

i . For the unlabeled data, images X̄S
i are input into li

(
·, wl

i
)

and li
(
·, w̄l

i
)

to get probability maps ȲS
i and ỸS

i . We then impose
a consistency loss, such as the Mean Square Error (MSE) loss Lmse

(
ȲS

i , ỸS
i
)
, between ȲS

i and ỸS
i . Thus, the training objective

LS
i in this setting is written as

LS
i = Lce

(
ŶS

i , YS
i

)
+ αLmse

(
ȲS

i , ỸS
i
)
= –

J∑
j=1

YS
i,j log

(
ŶS

i,j

)
+ α

J∑
j=1

∣∣ȲS
i,j – ỸS

i,j
∣∣2 , (2)

where J indicates the number of classes, namely, YS
i,j, ŶS

i,j, ȲS
i,j, and ỸS

i,j, respectively, indicate the j-th channel of YS
i , ŶS

i , ȲS
i ,

and ỸS
i . α is a trade-off hyperparameter whose value progressively increases from 0 to 0.1, guided by a time-dependent function

α (t) = 0.1 exp
[
–5

(
1 – t

T

)2]. Here, t represents the current training epoch, and T denotes the maximum training epoch. Besides,
a strong augmentation method, CutMix28, is introduced during training to enhance the performance further.

Learning from noisy annotations. A client Ci, such as C3 in Fig. 2, may have a dataset Ni =
{

XN
i , YN

i
}

with noisy annota-
tions. To train a local model from this noisy dataset, we employ the noise-robust Dice (NR-Dice) loss Lnd

13, a generalization
of Dice loss and Mean Absolute Error (MAE) loss. Assuming the probability maps for images XN

i output by the local model
are denoted by ŶN

i , we optimize the training objective LN
i of local model by combining the CE loss Lce and the NR-Dice loss

Lnd, defined as

LN
i = Lce

(
ŶN

i , YN
i

)
+ βLnd

(
ŶN

i , YN
i

)
= –

J∑
j=1

YN
i,j log

(
ŶN

i,j

)
+ β

J∑
j=1

∣∣∣YN
i,j – ŶN

i,j

∣∣∣γ(
YN

i,j

)2

+
(

ŶN
i,j

)2

+ ϵ
, (3)

in which J is the number of classes, and YN
i,j and ŶN

i,j represent the j-th channel of the noisy labels YN
i,j and probability maps

ŶN
i,j. β and γ ∈ [1, 2] are hyperparameters, and ϵ is a small constant to avoid zero-division. We set γ to 1.5, and ϵ to 10–5.

We gradually decrease the value of β from 0.1 to 0 with a time-based function β (t) = 0.1
{
1 – exp

[
–5

(
1 – t

T

)2]}, where t
indicates the current training epoch and T is the maximum training epoch.

Learning from scribble annotations. For a client Ci like C4 in Fig. 2 that possess a dataset Wi =
{

XW
i , YW

i
}

, in which
scribble annotations provide much fewer supervision signals than the ideal annotations, we adopt the partial cross-entropy
(pCE)16 for training, similar to the work10 for weakly-supervised instrument segmentation. Let the probability maps yielded
by the local model for images XW

i be ŶW
i . We calculate the training objective LW

i as the pCE loss Lpce

(
ŶW

i , YW
i

)
between ŶW

i

and YW
i , written as

LW
i = Lpce

(
ŶW

i , YW
i

)
= –

J∑
j=1

H∑
h=1

YW
i,j,h log

(
ŶW

i,j,h

)
, (4)

where J is the number of classes, and H denotes the annotated pixel numbers. ŶW
i,j,h and YW

i,j,h denote the probability value and
label value of the h-th pixel in the j-th channel of probability maps ŶW

i and scribble annotations YW
i .
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T A B L E 1 Detailed information on dataset setup for local clients. I: ideal annotation type. S: scarce annotation type. N :
noisy annotation type. W: scribble annotation type. ξ: labeled sample ratio. δ: noisy label ratio.

client annotation type sequence training sample testing sample notation
C1 I

{
1, 2

}
first 225 frames of

{
1, 2

}
last 75 frames of

{
1, 2, 3, 4, 5, 6, 7, 8

} -
C2 S

{
3, 4

}
first 225 frames of

{
3, 4

}
ξ =

{
0.2, 0.4

}
C3 N

{
5, 6

}
first 225 frames of

{
5, 6

}
δ =

{
0.2, 0.4, 0.6, 0.8

}
C4 W

{
7, 8

}
first 225 frames of

{
7, 8

}
-

3.3 Federated learning module

Following the standard FL paradigm, we involve a central server Q for model aggregation and updating. Concretely, at each
global round r, local clients

{
Ci
}K

i=1
upload local model weights

{
wl

i
}K

i=1
to the central server Q after local training, then the

central server Q aggregates local weights to update the global model weight wg. Afterward, local clients download the global
model weights, assign them to their local models, and then fine-tune them with their local datasets. By repeating this procedure
until convergence, we can develop a generalizable global model g (·, wg). In our study, we adopt the FedAvg scheme22 to update
wg, written as

wg
r+1 =

K∑
i=1

Ui∑K
i=1 Ui

wl
i,r, (5)

where Ui denotes the dataset size of client Ci.

4 EXPERIMENTS AND RESULTS

4.1 Experimental setup

Dataset and metric. We validated our method on the publicly available endoscopic dataset EndoVis17, provided by the
2017 robotic instrument segmentation challenge1. The EndoVis17 dataset consists of 10 sequences from abdominal porcine
procedures along with the corresponding ground truth for binary, multi-class, and multi-part segmentation tasks. All images
are in a 1920× 1080 pixel resolution. Our study focused on the binary segmentation task. We utilized the former 8 sequences,
denoted as

{
1, 2, 3, 4, 5, 6, 7, 8

}
. As suggested by the work1, we used the first 225 frames from each sequence for training and

the remaining 75 frames for testing. We employed the Intersection Over Union (IoU) as the evaluation metric.
Problem simulation. For the FL framework, we established a central server Q and four local clients

{
Ci
}4

i=1
. Concretely, we

allocated the first 225 frames of sequences
{
1, 2

}
,
{
3, 4

}
,
{
5, 6

}
, and

{
7, 8

}
to C1, C2, C3, and C4, respectively. We constructed

the test dataset using the last 75 frames of sequences
{
1, 2, 3, 4, 5, 6, 7, 8

}
. To mimic scenarios with scarce annotations§, we

treated 20% and 40% of the data as labeled data, leaving the remaining 80% and 60% as unlabeled data for C2. To generate
noisy annotations¶ for C3, we utilized dilation and erosion operations to create noisy annotations for 20%, 40%, 60%, and 80%
of the samples. The operations were carried out with a 5×5 all-ones matrix kernel and a variable number of iterations, denoted
as τ ∈ [15, 20]. For C4, we used the skeletonization method14 on the ground truth to obtain scribble annotations. Detailed
information on data setup for local clients is described in Table 1. For the sake of simplicity, we represent the ideal, scarce,
noisy, and scribble annotation types as I, S , N , and W .

Implementation details. We preprocessed the data by cropping all images from the pixel at the (320, 28) to achieve a pixel
resolution of 1280 × 1024, as described in the approach2. Subsequently, we resized all images to 320 × 256 by a factor of
16. We adopted the U-Net model18 as the backbone for training. We trained local models using the Adam optimizer with a
learning rate of 10–4. The batch size was set to 16. We ran the local training for 1 epoch and repeated the global round 200
times. We employed horizontal and vertical flips (with a probability of 0.5 to flip) as data augmentation strategies. Alongside
our method, we also executed experiments for standalone (local training) and centralization (centralized training) for
comparison. For standalone, we conducted local training with 100 epochs for local clients using their private datasets. For

§ We define ξ as the ratio of labeled images. For instance, ξ = 0.2 signifies that 20% of the images are labeled, leaving the remaining 80% unlabeled.
¶ δ is used to represent the ratio of noisy annotations. For example, δ = 0.2 denotes that 20% of the images contain noisy annotations, while the other 80% have perfect annotations.
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T A B L E 2 Quantitative results in IoU (%) of standalone under various data settings. I: ideal annotation type. S: scarce
annotation type. N : noisy annotation type. W: scribble annotation type. ξ: labeled sample ratio. δ: noisy label ratio.

method C1: I C2: I C2: S (ξ = 0.2) C2: S (ξ = 0.4) C3: I C3: N (ξ = 0.2) C3: N (ξ = 0.4) C3: N (ξ = 0.6) C3: N (ξ = 0.8) C4: I C4: W
standalone 71.02 ± 2.29 79.40 ± 0.63 79.65 ± 0.45 79.29 ± 0.93 81.56 ± 0.26 78.45 ± 1.32 76.59 ± 1.69 69.56 ± 0.97 73.82 ± 1.82 73.87 ± 0.88 64.09 ± 0.40

T A B L E 3 Quantitative results in IoU (%) of centralization and ours under various data settings. I: ideal annotation
type. S: scarce annotation type. N : noisy annotation type. W: scribble annotation type. ξ: labeled sample ratio. δ: noisy label
ratio.

method C1: I C1: I C1: I C1: I C1: I C1: I C1: I C1: I C1: I
C2: I C2: S (ξ = 0.2) C2: S (ξ = 0.2) C2: S (ξ = 0.2) C2: S (ξ = 0.2) C2: S (ξ = 0.4) C2: S (ξ = 0.4) C2: S (ξ = 0.4) C2: S (ξ = 0.4)
C3 : I C3: N (δ = 0.2) C3: N (δ = 0.4) C3: N (δ = 0.6) C3: N (δ = 0.8) C3: N (δ = 0.2) C3: N (δ = 0.4) C3: N (δ = 0.6) C3: N (δ = 0.8)
C4 : I C4 : W C4 : W C4 : W C4 : W C4 : W C4 : W C4 : W C4 : W

centralization 86.90 ± 0.79 83.65 ± 0.86 82.79 ± 0.55 81.53 ± 0.58 80.28 ± 0.65 82.90 ± 1.27 84.08 ± 0.38 80.95 ± 1.34 81.20 ± 0.21
ours 86.37 ± 0.31 84.86 ± 0.61 84.13 ± 0.12 83.87 ± 0.20 84.29 ± 0.35 84.99 ± 0.41 84.83 ± 0.18 84.19 ± 0.59 84.74 ± 0.82

centralization, we pooled all local datasets, constructed individual data loaders for these datasets, and performed centralized
training by iterating through these data loaders with 200 epochs. Each data loader with a specific annotation type corresponded
to a specific scheme from Section 3.2. In our study, all experiments were conducted three times with different random seeds.

4.2 Experimental results

Quantitative results. We first show the quantitative results of standalone for each client, as shown in Table 2. C1 trains
the local model using its dataset with ideal annotations and achieves an IoU score of 71.02%. For C2, C3, and C4 holding
datasets with imperfect annotations, the upper-bound results obtained with ideal annotations are also reported for reference.
We can note that imperfect annotations can negatively affect the model performance compared to ideal annotations. C2 makes
use of its dataset with scarce annotations to train its local model and realizes IoU scores of 79.40%, 79.65%, and 79.29%,
respectively, when using ideal annotations, scarce annotations with labeled data ratios of 0.2 and 0.4. C3 brings IoU scores of
81.56%, 78.45%, 76.59%, 69.56%, and 73.82%, respectively, under the settings of training with ideal annotations, noisy label
ratios of 0.2, 0.4, 0.6, and 0.8. C4 learns its local model from scribble annotations and achieves an accuracy of 64.09% in IoU,
while the upper-bound accuracy obtained by training with ideal annotations is 73.87% in IoU.

Table 3 shows the comparison between ours and centralization under various data settings. Firstly, we can observe that
ours and centralization consistently improves standalone under various dataset settings, providing evidence that taking
advantage of more data helps improve model accuracy and generalization ability.

Interestingly, when comparing centralization to ours, we note that centralization surpasses ours by about 0.53%
in IoU under the setting where both train models with datasets with ideal annotations, but realizes much worse performance
under the other settings where imperfect annotations are involved. The case of centralization outperforming ours using
ideal annotations is as anticipated since we believe centralization should benefit from the consolidation of all available
data, allowing the model to learn a more comprehensive representation of the data. However, the decrease in performance of
centralization with various imperfect annotations presents an intriguing phenomenon.

We hypothesize that the inconsistency of annotation types and their corresponding learning strategies could be a potential
explanation. In the centralized setup, the model might be overly influenced by the majority trend in the data, which could lead
to a “rich get richer” effect, often ignoring or misrepresenting the minority class or outliers. This effect can boost performance
when ideal annotations are used due to the high consistency of the data. However, with the introduction of various imperfect
annotations, the data becomes inconsistent and diverse. Moreover, each type of imperfect annotation requires a different learn-
ing strategy, leading to inconsistent strategies for different data loaders. The single centralized model may not adapt well to
the diverse learning strategies, thus struggling with inconsistent or conflicting information, which results in a decline in per-
formance. Contrarily, due to its distributed spirit, Ours with FL might be more robust against such inconsistencies. In Ours,
each local client learns a model based on its local data, and these local models are then combined in a global model. This pro-
cess allows each client to focus on their specific data subset, accommodating the local characteristics and imperfections of the
data. Besides, the aggregation of these models might provide a better balance between different learning strategies, leading to
enhanced performance.
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original image ground truth standalone 𝐶1 standalone 𝐶2

standalone 𝐶3 standalone 𝐶4 centralization ours

original image ground truth standalone 𝐶1 standalone 𝐶2

standalone 𝐶3 standalone 𝐶4 centralization ours

F I G U R E 3 Qualitative visualization results. Cases are from the settings of C1: I, C2: S (ξ = 0.2), C3: N (δ = 0.8), and
C4: W . I: ideal annotation type. S: scarce annotation type. N : noisy annotation type. W: scribble annotation type. ξ: labeled
sample ratio. δ: noisy label ratio.

Qualitative results. In addition to the quantitative results, we present a qualitative analysis of different methods, as shown in
Fig. 3. We showcase two examples from the settings of C1: I, C2: S (ξ = 0.2), C3: N (δ = 0.8), and C4: W . We can note that
our method produces results considerably closer to the ground truth, even under this challenging data situation. It demonstrates
that our method can effectively learn from distributed datasets with imperfect annotations and generate accurate predictions.

4.3 Analytical studies

Effectiveness in handing various imperfect annotations. We first evaluated the efficacy of adopted methods, i.e., the MT
framework15, NR-Dice loss13, and pCE loss16 in handling imperfect annotations, since local clients should contribute effective
local models for global model preparation. We show the cases of standalone for C2, C3, and C4 in Fig. 4, where the testing
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F I G U R E 4 Ablation study on effectiveness of adopted methods of local clients in handling various imperfect annotations.
I: ideal annotation type. S: scarce annotation type. N : noisy annotation type. W: scribble annotation type. ξ: labeled sample
ratio. δ: noisy label ratio.
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F I G U R E 5 Ablation study on
contribution of each client for global
model preparation under the settings
of C1: I, C2: S (ξ = 0.2), C3: N
(δ = 0.8), and C4: W .

T A B L E 4 Ablation study on impact of various noise levels simulated
with different ranges for dilation/erosion iteration τ and different values of
noisy label ratio δ. I: ideal annotation type. We chose τ ∈ [15, 20] for noisy
label simulation in our study.

ranges δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8
τ ∈ [1, 5] 81.05 ± 0.87 81.00 ± 0.34 80.32 ± 1.05 80.40 ± 0.68
τ ∈ [5, 10] 79.98 ± 1.21 78.72 ± 1.11 78.49 ± 0.43 78.36 ± 1.29
τ ∈ [10, 15] 79.42 ± 1.26 77.70 ± 1.12 73.94 ± 0.85 74.82 ± 1.76
τ ∈ [15, 20] 78.45 ± 1.32 76.59 ± 1.69 69.56 ± 0.97 73.82 ± 1.82

upper-bound: I 81.56 ± 0.26

accuracy in IoU of each training epoch is recorded. We can observe that the adopted methods present successful solutions.
Specifically, the MT scheme improves the baseline when training with very scarce annotations (ξ = 0.2), as shown in Fig. 4(a).
Besides, the NR-Dice loss shows better noise tolerance than the CE loss in a very high noise level setting (δ = 0.8), as illustrated
in Fig. 4(b). In addition, the pCE loss presents its potential solution in learning with scribble annotations, as depicted in Fig. 4(c).
It achieves an accuracy of about 64.09% in IoU, which is about 9.78% lower than the upper-bound accuracy.

Contribution of each client. We then analyzed the contribution of each client for global model preparation under the settings
of C1: I, C2: S (ξ = 0.2), C3: N (δ = 0.8), and C4: W . As shown in Fig. 5, we can observe that combining all clients
achieves the best performance while excluding any single client leads to accuracy degradation. The global model’s performance
decreases by approximately 3.06%, 3.51%, 1.35%, and 1.12% in IoU when excluding C1, C2, C3, and C4, respectively. This
demonstrates that each client contributes to the overall performance.

Choice of noise level for noisy annotation simulation. We further studied the impact of various noise levels simulated with
different ranges for dilation/erosion iteration τ and distinct values of noisy label ratio δ. Larger values for both τ and δ lead to
an increased level of noise. As expected, our experimental results, shown in Table 4, demonstrate a decline in model accuracy
in correlation with increasing noise levels. It is well-accepted that a small degree of dilation/erosion, e.g., with τ ∈ [1, 5], can
better mimic the uncertainty and ambiguity often experienced during the annotation process, especially near the boundaries
of objects. Interestingly, our experiments indicate that the model’s performance remains relatively stable even with smaller
iteration ranges, suggesting that the model is resilient to a certain degree of annotation noise in binary instrument segmentation
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since it is a relatively easy task. However, in this study, we intentionally opted for a more extensive iteration range for our noisy
simulations, i.e., τ ∈ [15, 20]. We believe that this decision allows us to thoroughly evaluate and highlight the robustness of
our method under more challenging conditions where the noise level is substantially increased, thus providing a more rigorous
and convincing demonstration of its capabilities.

5 DISCUSSION AND CONCLUSION

We aim to learn a generalizable model for instrument segmentation from decentralized surgical sequences with various
imperfect annotations. In practice, surgical datasets are usually highly siloed with individual hospitals or medical institutions due
to privacy concerns. Besides, these datasets often come with various imperfect annotations. Most existing methods ignore these
realities and focus on centralized and well-annotated data, limiting their applicability. This problem relates to data availability
and quality issues in the real world and calls for more robust, widely applicable models for robotic surgery.

Our method unifies the semi-, noisy label-, and scribble-supervised segmentation paradigms and the FL scheme into a single
framework. Our method handles data privacy issues and effectively learns from imperfectly annotated data, accommodating di-
verse annotation scenarios. Our method outperformed standalone and centralization under various imperfect annotation
settings, demonstrating its successful solution for this new and challenging problem. We posit that the variation in annotation
types and their respective learning strategies might account for the diminished performance in centralized learning. However,
this hypothesis warrants deeper exploration, including examining intermediate training patterns and offering a more detailed
analysis of the relationship between different strategies and performance outcomes.

Despite its efficacy, our method has several limitations that warrant future investigation. Firstly, a gap exists between our
method and its real-world implementations. One aspect of this gap stems from our use of simulated imperfect annotations,
such as noisy annotations and scribble annotations. Although imperfect annotation simulation is widely applied in existing
methods12,29, authenticating our model with real-world imperfect annotations will further fortify the validity of our approach.
Additionally, our method depended on a simplified assumption that each client possesses only a single type of annotation.
Future research should address the challenges associated with each client having multiple annotation types to better reflect the
intricacies of real-world scenarios, thus ensuring a deeper understanding and a more comprehensive solution. Secondly, our
method relied on the conventional FedAvg scheme22. However, considering that each client possesses distinct datasets and
diverse types of imperfect annotations, the performance of local models can exhibit significant variance. This raises the question
of whether naive aggregation with FedAvg in our study would inadvertently impact the robustness and fairness of the global
model30,31. Therefore, it is essential to investigate the effects of local model performance variance on the global model in our
context and to ascertain whether more tailored aggregation strategies could yield improved performance. Thirdly, our method
was only evaluated with binary instrument segmentation. To assess the generalization ability of our method, further validation
with other instrument segmentation tasks and additional surgical datasets is also required.
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