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Abstract
Real-time detection of surgical tools in laparoscopic data streams plays a vital role in understanding
surgical procedures, evaluating the performance of trainee surgeons, facilitating their learning, and ultimately
supporting the autonomy of robotic systems. Existing detection methods in surgical data science need to
improve processing speed and high prediction accuracy for real-time applications. Most of the methods
heavily rely on anchors or region proposals, limiting their adaptability to variations in tool appearance
and leading to sub-optimal detection results. Moreover, using non-anchor-based detectors to alleviate this
problem has been partially explored without remarkable results. Therefore, we introduce an anchor-free
architecture based on a transformer that allows real-time surgical tool detection. We propose to utilise
multi-scale features within the feature extraction layer and at the transformer-based detection architecture
through positional encoding that can refine and capture context-aware and structural information of different-
sized tools. Furthermore, we introduce a supervised contrastive loss to optimise representations of object
embeddings, resulting in improved feed-forward network performances for classifying localised bounding
boxes. Our strategy demonstrates superiority to state-of-the-art (SOTA) methods. Compared to the most
accurate existing SOTA (DSSS) method, our approach showed an improvement of nearly 4% on mAP50 and
a reduction in the inference time by 113%. It also showed a 7% higher mAP50 than the baseline transformer
model.
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1 INTRODUCTION

Minimally invasive surgery (MIS) vision analysis has proved to be crucial in developing new technologies that can improve the
outcome and performance of various minimally invasive procedures1. Vision analysis of surgical data could facilitate scene
understanding by providing context and characteristics of the procedures2,3. After the procedures, this information can be used
in the feedback report for computer-assisted diagnosis and automatic assessment of operative skills. During surgical procedures,
vision analysis can be used in a real-time decision support system for computer-assisted detection and diagnosis. Additionally,
with the latest MIS technology, human-robot collaborative surgery can also be achieved using vision analysis to automate
specific tasks4,5,6.

Current research has associated understanding of the surgical scene with descriptive solutions to domain-related tasks. Some
of the most relevant are depth estimation, phase recognition, tool recognition, detection and tracking, and anatomy recognition
and detection7. Although all of these tasks share some similar principles, the development of solutions for each of them requires
different data types with different acquisition challenges8. Tool-related tasks are the ones that have found the path less resistant
to the data acquirement and hence, to prove concepts and develop complex solutions9. Therefore, they have stood out as pivotal
for higher understanding acquisition and constrained the focus of this work to tool detection.

Object detection, in computer vision, is the component that extracts patterns from digital images or video frames and
synthesises the information in the classification and localisation of specific objects3,1. In surgical scenarios, challenges for the
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analysis are exacerbated by the nature of the surgical data10. Visual artefacts are commonly encountered since the surface of
tools and tissues are reflective, there is a constant movement of tools and camera, the production of gases when cauterising
or cutting blurs the images, changes in the illumination produce shadows, there is occlusion of tools and tissues of interest,
and fine details of the anatomies change from one patient to another. Scale variation and multi-class classification are also
important problems in a surgical scenario due to the high similarity among surgical tools and the constant forward and backward
movement of the endoscopic camera. Finally, real-time processing is critical since the system and surgeon’s actions must be
taken in real-time, and any delay might compromise patient’s safety and incur surgical accidents.

Early surgical tool detection methods attempted to address some of these problems based on handcrafted filters. However,
now their performance has been overcome by deep learning-based detectors8,11. Implementing these models shifted the research
community’s focus from hand-crafted feature extractors to deep-learning methods that allow the generation of optimal filters.
These increase detectors’ performance and complexity, bring new deep learning-related challenges and expose others7,2. For
instance, receptive field constraints pose a trade-off between the extraction of local and global features8. In the surgical scenario,
both local and global features are needed to differentiate similar tools and tissues at different scales. Anchor dependency is
another major issue in modern detectors12,13,14. The detectors with the best performance in medical and non-medical data rely
on pre-defined anchor boxes. They represent a prior assumption about the size, aspect ratio, and location of objects in the image.
It is particularly detrimental to the detector’s performance in a surgical scenario with high variance in the objects’ location,
orientation and scale15,10. To mitigate these problems, we considered that a multi-scale analysis and an increased capability of
contextualisation are key components in developing an optimal solution. On top of this, the development of a tailored object
representation space that solves ambiguities in the multi-class classification task is yet to be presented. Thus, our contribution
can be summarised as below:

• Generation of richer features through incorporating a Res2Net16 as backbone, an architecture that makes local-scale
consideration for the extraction of features.

• Multi-scale position encoding of two projected features maps extracted from the backbone to incorporate features at multiple
scales in the self-attention mechanism of the transformer. We call this new architecture our proposed ”dense transformer”
(DTX) network and it is inspired by the DETR detector14.

• Contrastive learning over the object representation of the surgical tools to encourage consistency and separability in the
feature embeddings of the different classes.

2 RELATED WORK

For object detection (also called location detection), the development of new methods has been mainly driven by the research
groups that have facilitated datasets with tool location annotations10 since they provide the means for supervised training and
validation of results. For instance, Sarikaya et al.17 presents the ATLAS dataset for robotic MIS instrument detection in a
mock environment. It provides an interesting and valuable framework for proving concepts in robotic MIS. However, its use in
developing models for real-world scenarios is limited. Jin et al.18 presented the first Fast RCNN-based model for instrument
detection on real surgical scenarios by adding location annotation to 2532 frames of the m2cai16-tool dataset. Although the
reported performance of their model is low (5 FPS and 0.6 mAP[50]), the m2cai16-tool-location dataset and deep learning
techniques have significantly impacted the works forming state-of-the-art (SOTA) in surgical tool detection. Zhang et al.19

proposed a Fast RCNN-based model and addressed the problem of anchor dependency with a modulated feature block to
incorporate the anchor shape information in the generated feature maps from the backbone. A YOLO-based model was presented
by Choi et al.20. His work reported the fastest inference time of 48 FPS in the m2cai16-tool-location dataset but low performance
for localisation over preselected videos for validation. A similar single-stage YOLACT++21 framework with multi-scale fusion
was used for an instance segmentation of tools in ROBUST-MIS challenge dataset22. However, the developed method only
enabled presence of tool but not their class categories. Sai and Sinha23 presented a multitask model for tool presence, detection
(multi-class), and phase classification based on a DSSD architecture (deconvolutional single shot detector). They explained
how features from different parts of the architecture can be taken to solve different tasks and achieve improved performance
regarding location inference. They did not report on the inference time, but based on the original DSSD paper24, the speculated
inference time is 15 FPS. Recently, Ali et al.25 trained their model on the m2cai16-tool-location dataset under a semi-supervised
learning paradigm using a teacher-student framework to address the data scarcity problem for multi-class tool detection. Their
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results showed improved accuracy with 10% of the annotated data, but inference time was not reported. Zhao et al.26 proposed
a lightweight cascaded CNN architecture from coarse to fine. The first stage in a two-stage detector was similar to a region
proposal stage but with fixed-sized regions. The second was a regression network of the surgical instrument tip region. They
reported an inference time of nearly 24 FPS; however, they detected and tracked tip instruments without classification. Similarly,
Liu et al.15 proposed a method for tool location without classification over the ATLAS dataset and a relabeled version of the
Endovis Challenge 2015 dataset. Also, they focused on anchor-dependant methods using a compact stacked hourglass network
that predicted the centre of the boundary box (but not multi-class instruments) with high accuracy and speed (37 FPS).

Another MIS-related dataset is the Cholec80 dataset27 which includes phase and tool presence annotations for 80 videos
of cholecystectomy. Vardazaryan et al.28 proposed preserving spatial information with a fully convolutional neural network.
It predicts instrument presence, and posteriorly, an analysis of the activation maps gives the instrument location. They used a
subset of the Cholec80 dataset, selecting images with one instrument per frame since the analysis does not allow multi-instance
detection. In 2020, Shi et al.29 at Shandong University took 4011 frames from the Cholec80 dataset and added spatial annotations
on the tips of the tools for multi-instance detection. They proposed a two-stage detector, an attention-guided convolutional neural
network with coarse and refined modules, to achieve high inference time (55.5 FPS) and mAP (91.65 %). Cholec80-location
subset was also used on a one-stage detector by Yang et al.30, adding modifications to the backbone and neck of the architecture.
In the backbone, they used a GoshtNet architecture and cross-stage partial connections to increase inference time and enhance the
learning process. In the neck of the detector, they used a U-Net and spatial pyramid pooling to address the multi-scale problem.
This work reported an mAP of 91.6 % and a time inference of 38.5 FPS. However, there is no free access to this Cholec80-
location subset for a fair comparison in the tool detection and classification tasks which limits the usability and reproducibility of
the techniques explored in these works. In 2022, Kondo, S.31 explored the use of a transformer for tool presence without location.

Although numerous studies have made notable advances in object detection for surgical instruments in MIS, existing
approaches have only partially addressed the challenges for high accuracy and inference speed. Therefore, there is a need for a
comprehensive solution that concurrently tackles these issues and enables the practical deployment of a real-time tool detector in
MIS settings with higher detection and localisation performance. As detailed above since most of the public datasets either have
only presence (e.g., Cholec80) or lack labels for different surgical instrument types (e.g., Endovis Challenge 2015 dataset). Thus,
in this work we will evaluate our method on m2cai16-tool-location dataset which has been largely used for multi-class tool
detection and localisation.

3 METHOD

In this work, we propose a new setup for the architecture and training of a multi-scale transformer-based detector (Figure 1)
that incorporates Res2Net architecture as a backbone and extracts multi-scale features maps (from two resolutions) addressing
the limitation of small receptive fields and enhancing overall model robustness against scale changes of objects in the images.
The extracted features from the backbone go through different 1x1 2D convolutional layers (Conv2d) that reduce the channel
dimension to 256. They bring the feature maps from different resolutions to the same feature space. Thereby, global multi-scale
feature analysis is enabled in the transformer encoder (Tx-encoder). Subsequently, the decoder of the transformer (Tx-decoder)
creates a set of object representations that are ultimately processed by two feed-forward neural networks that predict the class
and location of the objects. In addition to the Hungarian loss, we also proposed the integration of a contrastive loss (CL loss) in
the training of the model. CL loss leverages the output of the TX-decoder to encourage consistency and separability over the
generated object representations. Below we provide a detailed description of the final network architecture and the combined
loss functions used in this work.

3.1 Architecture details

Similar to the recent DETR network14, after the extraction of features from the backbone network, we use a transformer for
learning reliable feature representations using self-attention mechanisms. However, extra projection layers and concatenation
of scales are added for the feature maps taken from the backbone. The projection layers (1× 1 convolutional layers) reduce
the channel dimension to 256, so there is a common feature space between scales (see Figure 2.a). We then scale the positions
(xj, yj) of the features at different scales such that the position of each feature is referenced to a common location (x, y) despite
coming from different resolutions (see Figure 2.a.2). The position for each channel ck, with k representing the index of the



4 G. Loza, P. Valdastri and S. Ali

F I G U R E 1 DTX network architecture. Our proposed DTX architecture uses a Res2Net16 to extract feature maps at two
different scales and forms a dense feature embedding by adding the projection layers (Conv2d) that set the same number of
channels in each projection. Then our network, inspired by DETR14, exploits the use of scaled positional encoders to locate the
features from different projections under a common framework. Finally, the decoded object representations by the transformer
go through two different feed-forward neural networks for class and boundary box prediction.

feature channel in the sine positional encoder, is calculated using Eq. (1) where width and height are represented as ws and hs,
respectively, at scale s.

pos(xj, yj, ck) =

{
4π
ws

xj k ∈ [0, 152]
4π
hs

yj k ∈ [153, 255]
(1)

Then the embeddings after positional encoding are flatted to a shape (hsws, 256), and these are concatenated along the first
axes such as (

∑s=2
s=1 (hsws), 256) is the final input shape to the transformer encoder (Tx-Encoder) (see Figure 2.a.3). Within the

Tx-encoder, the multi-head self-attention modules focus the attention on the features from different scales that are more relevant
to the final prediction. In this way, we leverage the transformer for performing attention to both local and global features. The
transformer decoder (Tx-Decoder) takes a matrix of zeros as the query to initialise the decoding process. This query shapes the

F I G U R E 2 Feature map processing. a.1) Embedded feature map structure after the projection layer. The position x and y
of each feature are encoded in the first and second half of the channels, respectively. a.2) The positions x, y of the feature maps
are scaled by Eq.( 1) so the transformer can be aware of the location of the features under a common framework. a.3) Input of
the transformer: Flattened and concatenated features after positional encoder. Bipartite graph. b.1) GT boxes in green form the
set of vertices V , and predicted boxes in blue form the subset V̂ . Initially, all elements between sets are connected.
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final output by assuming the maximum number of objects in the image and encrypting each object representation in 256 values.
Finally, two feed-forward neural networks make the final prediction. A one-layer perceptron with a softmax activation function
processes each object representation for its classification giving the highest probability to the detected object (or not-object class).
For the prediction of the boundary box of each object representation, a multi-layer network (3 layers) infers the coordinates of
the box (centre x, y, w, and h).

3.2 Loss functions

We introduce a contrastive loss function in addition to the loss function implemented in DETR14. We have a similar matching
stage, but unlike DETR, we exploit the matching solution to incorporate the contrastive loss and jointly optimise it with the
Hungarian loss.

Matching stage
For each image, a V̂ set is formed by the predictions of the model and a V set is formed by padding the objects in the ground
truth (GT) such that both sets have the same number of elements. Each element vi in V contain (ci, bi) where ci is the class
associated with the boundary box bi and the padded elements have a ci value of no-object class (∅). Similarly, the element v̂j in
V̂ contain (ôj, ĉj, b̂j) for the object representation, class and boundary box predicted by the model. All the elements in one set are
connected to the elements in the second set to form the graph G, thus forming a bipartite graph (Figure 2b).

The comparison between the boundary boxes in the GT and the predictions are given by the box loss in Eq. (2), where
a weighted sum of the L1-norm and the generalised intersection over union (GIoU) are used. The matching costs (mc) of a
connection (edge) in G is given by Eq. (3), where b̂j and bi are boundary boxes (predicted and GT), p̂j(ci) is the predicted
probability of class i (the GT class) for the predicted box j, and Lbox the box loss function.

Lbox(b̂j, bi) = λ1(L1(b̂j, bi)) + λ2(GIoU(b̂j, bi)) (2)

mcji = Lbox(b̂j, bi) + λ3(1 – p̂j(ci)) (3)

The costs matrix CM is then calculated for all samples at indexes i and j by finding the matching cost between the elements of
the prediction and the GT. Later, the Hungarian algorithm is used to find unique correspondences between the elements of the
sets such that the sum of the matching costs of those correspondences is the minimum. It does that by finding the permutation of
the rows in CM that minimise the trace of the matrix so, in the found permutation h, h(i) is the index j of the matched prediction
to the element i in the GT.

Hungarian loss
The Hungarian loss function14 is then applied as shown in Eq. (4), which is a weighted combination of the cross-entropy loss
and the defined box loss function.

LH(V , V̂) =
∑

i

–λ3 ln(p̂h(i)(ci))ci + 1{ci ̸=∅}Lbox(b̂h(i), bi) (4)

Contrastive loss
We propose to add a complementary contrastive loss (LCL) that is jointly optimised with the Hungarian loss in our final loss
function. The use of LCL help to cluster representations for each class while separating clusters of different classes. The proposed
loss is a variation of the Normalised Temperature-Scaled Cross-Entropy Loss (NT-Xent loss) presented in SimCLR32. The
main difference is that the proposed CL loss can operate over a supervised paradigm leveraging the solution provided by the
Hungarian algorithm. To do so, we look at the samples k in the batch B that contains (Vk, V̂k, hk) for the GT, predictions, and
optimal correspondences, and we aim to find all the positive P and negative N contrastive pairs for each class c in the batch
as presented in algorithm 1. Pc contains all the pairs of object representations (o, o′) such that their classes are equal, and Nc

contains all the pairs such that their classes are different. Note that Pc avoids the self-comparison, but when the number of
representations related to a given class is equal to 1, the pair (o, o) added in Pc to pull apart that representation from the rest of
classes in the batch. Then Eq. (5) shows the contrastive loss for each class using Pc and Nc, it applies cosine similarity sim
between the object representations.
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Algorithm 1 Supervised contrastive learning algorithm for multi-class labels.

Require: Batch: B; Classes: C
nc = 0 ▷ number of classes
L = 0
for c ∈ C do

pos_samples = neg_samples = {}
for k ∈ {0 to len(B)} do

for i ∈ {0 to len(V[k])} do
if V[k].c[i] == c then

pos_samples ← V̂[k].o[h[k](i)]
else

neg_samples ← V̂[k].o[h[k](i)]
end if

end for
end for
P = N = {} ▷ positive & negative contrastive pairs
for o ∈ pos_samples do

for o′ ∈ neg_samples do N ← (o, o′)
end for
pos_samples.pop(o) ▷ Remove the reference from the list
for o′ ∈ pos_samples do P ← (o, o′)
end for
if P == ∅ then P ← (o, o)
end if

end for
nc = nc + 1
L = L + Eq5(P ,N )

end for
Lcontrastive = L/nc

LCLc (Pc,Nc) = –log

∑
(o,o′)∈Pc

exp(sim(o, o′))∑
(o,o′)∈(Pc∪Nc) exp(sim(oi, o′))

(5)

The total contrastive loss is the average of all the contrastive losses per class in a given batch B with nc classes and size bs.
Thus, the final loss L which is an equally weighted sum of the Hungarian loss and the Contrastive loss, can be represented as:

L(B) =
λ4

bs

bs∑
k=0

LH(Vk, V̂k) +
λ4

nc

nc∑
c=0

LCLc (Pc,Nc). (6)

4 EXPERIMENTS AND RESULTS

4.1 Dataset

We evaluate our architecture on the publicly available m2cai16-tool-location dataset18 that contains 2,532 labelled frames from
15 different videos of cholecystectomy procedures performed at the University Hospital of Strasbourg in France. To make our
method comparable and reproducible, we have used the same split proposed in the original paper18. The final experimental
dataset comprises 1405 images for training, 843 images for validation, and 563 images for testing (held-out set). As Sahu33

pointed out, this dataset poses an extra challenge to a solution for the multi-class classification problem since it mirrors the
imbalance appearing of the surgical tool during the operation. Therefore, the seven tool classes plus one extra for the background
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T A B L E 1 Quantitative results. Comparison of state-of-the-art surgical tool detection methods, anchor-free methods, and
our proposed dense transformer (DTX) with and without multi-scale and contrastive loss inclusions.

Model mAP[50:95] mAP[50] mAP[75] FPS Backbone Input size
SOTA comparison
F. R-CNN 18 NA 0.631 NA 5 VGG-16 NA
F. R-CNN 19 NA 0.696 NA 15* ResNet101 NA
YOLO 20 NA 0.722 NA 48 DarkNet19* 448×448
DSSS 23 NA 0.912 NA 15* ResNet101 320×320
F. R-CNN+SSL 25 0.468 0.902 0.462 15* ResNet50-FPN NA
Anchor free methods
FCOS 13 —– 0.900 —– 12 ResNet50 450×450
DETR 14 (baseline) 0.520 0.886 0.524 36 ResNet50 320×320
Our proposed approaches
DTX 0.536 0.926 0.557 35 ResNet50 320×320
DTX + MS 0.543 0.939 0.561 32 Res2Net50 320×320
DTX + MS + CL 0.545 0.945 0.572 32 Res2Net50 320×320
DTX, Dense Transformer (our method); Contrastive Loss, CL;MS, Multi-scale backbone
NA, not available; * This value was not officially reported by the author

class were considered in the ground truth labels, and a discussion on how the implemented solution alleviates this problem is
presented in the results section.

4.2 Experimental setup

Data augmentation. All images were resized to 320×320 pixels. Six different geometric transformations were selected for data
augmentation. During training, the transformations were randomly applied with a 33% probability each.
Model configuration. The optimal hyper-parameters for our model are reported in this section. However, a hyper-parameters
search grid is presented in the ablation study. The building blocks in the Res2Net50 architecture (the used backbone) were
configured to split the feature maps into four sets of 26 channels each. In the neck of our architecture (see Fig. 1), the feature
maps that go through the projection layers were taken from layers 2 and 4 of the backbone. The number of queries that initialise
the decoder process in the transformer was set to 32, and the number of layers in the encoder and decoder of the transformer to 6.
Training setup. We build our model leveraging part of HuggingFace’s Transformers repository34 and making the pertinent
changes to match the model’s description presented in Section 3. During training, an AdamW optimiser with a step learning rate
scheduler was added. The scheduler tracked and modify the learning rate from 1.0e–04 to 1.0e–06, with a factor of 0.5 at every 40
epochs. In addition, a stopping criteria tracking the validation loss was included in the experiment. It had a patience of 50 epochs
and considered a minimum delta of 1.0e–0.5. We run all our code in a setting with multiple CPU processors provided by the
Research Computing Team at the University of Leeds in their High Performance Computing facilities. The requested nodes
provided 48GB system memory and an NVIDIA V100 32 GB graphic card.
Evaluation metrics. We present and compare the performance of our model based on two widely used metrics called mean
average precision (mAP) for object detection. For this metric, a threshold value is used to determine if a detection is considered
a true positive or a false positive based on the IoU (Intersection over Union) value ranging from [0.5 : 0.05 : 0.95] for overall
mAP and at specific IoUs, e.g., [0.5] and [0.75]. The second metric reported is the inference time in frames per second (FPS).

4.3 Comparison with SOTA and baseline methods

In this Section, we provide comparison with state-of-the-art methods used for detection task on m2cai16-too-location dataset.
Alongside, we also present quantitative results on the baseline model and provide results for different architectural changes that
has been proposed.
Quantitative results. Table 1 and Table 2 present the comparison of the SOTA methods for supervised surgical tool detection,
anchor-free methods in the literature and our propositions for overall mAP and AP for each class category, respectively. From
Table 1, it is evident that our proposed approaches outperformed both the SOTA methods and other anchor-free methods. For
example, our final model (DTX+MS+CL) has mAP[50] is 4% above the best SOTA method (DSSS), and nearly 7% higher than
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T A B L E 2 Quantitative results. Average precision (AP) comparison per class.

Method Grasper Bipolar Hook Scissors Clipper Irrigator S. Bag
SOTA comparison
Fast R-CNN 18 0.483 0.670 0.784 0.677 0.863 0.175 0.765
Fast R-CNN 19 0.541 0.695 0.868 0.739 0.842 0.416 0.771
YOLO 20 0.893 0.324 0.932 0.666 0.903 0.424 0.914
Anchor free methods
FCOS 13 0.846 0.927 0.942 0.905 0.903 0.857 0.922
DETR 14 (baseline) 0.826 0.910 0.864 0.915 0.844 0.932 0.911
Our proposed approaches
DTX (ours) 0.871 0.957 0.933 0.900 0.926 0.942 0.950
DTX + MS 0.891 0.955 0.955 0.965 0.933 0.921 0.956
DTX + MS + CL 0.894 0.980 0.960 0.945 0.919 0.957 0.959
DTX, Dense Transformer (our method); Contrastive Loss, CL; MS, Multi-scale backbone

the baseline DETR. Our experiments also showed an additional improvement at mAP[75] over the baseline with 0.572 compared
to 0.524, which is 9% above. On the FPS, our method achieves 113% higher than the SOTA DSSS method and is only slightly
lower than DETR-baseline methods (4 FPS lower). Table 2 showed significant improvement in all class categories compared
to the SOTA and the baseline DETR, regardless of the frequency with which each tool class appears in the dataset’s images.
Common (for example the grasper and hook) and rare (for example scissors and bipolar) tools are detected with high mAP,
which suggests that the model focuses on relevant features from the images for the formation of the object representations
associated with each class. For example, compared to the most accurate method, DETR, our approach achieves 8%, 7.7%, 11%,
3%, 8.8%, 2.7%, and 5.2% respectively, for grasper, bipolar, hook, scissors, clipper, irrigator, and specimen bag.
Qualitative results. Figure 3 shows predictions from our proposed approach (DTX+MS+CL). The selected samples were the
images with very low errors (on the left) and the images with the most significant errors (on the right). It can be observed that for
the frames with optimal predictions, the predicted boxes (in blue) completely overlap the ground truth boxes (in green). However,
for those with erroneous predictions (in the right), in most cases, either the object was not present (frame incorrectly labelled) or
the object was incorrectly classified due to the fact that the intrinsic characteristics of the object are not present. In the second
case, we can observe that our model makes a good guess by associating the object with a fairly similar tool. Figure 4 shows
that the object representation space generated by our model in the decoder of the transformer is organized after implementing
contrastive learning by maximising the distance between the cluster of the classes and arranging misclassified objects. This
adds up to the AP improvement presented in Tables 1 and 2, strongly suggesting that the error due to the misclassification of
objects is considerably alleviated with our approach while boosting the performance. Having solved this problem, future efforts

F I G U R E 3 Qualitative results: Frames taken from the test set with their respective predictions. Predictions with the highest
IoU are presented on the left, and predictions with the lowest IoU are presented on the right.
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F I G U R E 4 Object representation space. Dimensional reduction of the object representation space (TX-decoder’s outputs)
using t-SNE, each dot in the graphs represents a detected object by our model (DTX+MS). At the top, without contrastive
learning (CL), the clusters for each class are barely separated, and some points are mislocated (see red arrows). This distribution
is prone to hinter the performance of classifiers. However, at the bottom, we can clearly see how the integration of the CL
alleviates this problem. There is a wide separation between clusters, and all the mislocated points were correctly rearranged.

could be focused on developing methods that increase the precision of the predicted boundary box so that the value in the IoU is
improved. Supplementary Figure 1 shows the attention maps from the transformer’s last layer in the decoder. Since we use
feature maps at different scales, these images demonstrate how the relationship between the features in the regions of attention is
present at different scales.
Ablation study. The performance of models over the validation set for different network configurations (e.g., scales, feature
layers, and feature maps) and combinations of relevant hyper- parameters (e.g., number of queries) is presented in Supplementary
Table 1 . It can be observed that for different numbers of queries ranging from 32 to 100 queries, 32 queries boosted the
performance of the model on the mAP[75] by 8.8% compared to using the number of queries proposed by DETR14. Our
experiments also showed that a combination of four scales and 26 channels is the optimal backbone yielding 6.2% and 3.6% of
improvement on the mAP[50] and mAP[75], respectively. The number of layers in the encoder and decoder of the transformer
shows that a network with six layers provided the best trade-off between accuracy (0.866) and inference speed (FPS of 36).
Finally, it can be observed that the inclusion of multi-scale (MS) with the Res2Net backbone increases the mAP[50] by 1.5% and
boosts by 2% when CL is added, with only a slight decrease in FPS.

5 DISCUSSION AND CONCLUSIONS

Even though there are works in surgical tool detection in literature, these methods are widely built on anchor-based methods,
do not incorporate multi-scale feature embedding for tackling variable tool sizes, and suffer from low speed18,19,20,23,25. Our
approach using transformer with the incorporation of multi-scale feature selection is not only independent of anchors but
also provides improved accuracy and inference time compared to SOTA methods in the literature. By utilising the Res2Net
backbone into our proposed dense transformer (DTX) enabled the inclusion of local and global features that can jointly tackle
variations in the size of the objects and receptive field constraints. Our experiments showed improvement in almost all the tool
categories by a large margin, up to 10.5%, compared to the baseline model (DETR14), which is the most consistent across the
tool categories compared to any SOTA methods (Table 2). Further, we also showed that the incorporation of contrastive loss aid
in minimising inter-class separation and maximising intra-class segregation, which helps to deal with closely similar-looking
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tool categories (Figure 4, Table 2). The less accurate predictions of our model are probably due to the fact that there are not
enough intrinsic features of the object within those samples, and confusion might happen, for example, misclassification of
grasper and clipper (Figure 3). Consideration of features from previous frames could alleviate this problem and boost a more
accurate prediction.

In conclusion, we proposed a transformer-based surgical tool detection method introducing a novel multi-scale feature
assembly and incorporation of contrastive loss function utilising information the bipartite graph. The proposed model is anchor-
free and has near real-time performance (32 FPS). To this extent, we also demonstrated the superiority of our approach compared
to several SOTA approaches and other anchor-free methods. The qualitative results also demonstrated the effectiveness of our
model, with high-quality predictions even in the challenging scenes. In our future work, we aim to leverage temporal features
from videos to improve tool detection.
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