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Abstract
Endoscopic renal surgeries have high re-operation rates, particularly for lower volume surgeons. Due to the
limited field and depth of view of current endoscopes, mentally mapping preoperative computed tomography
(CT) images of patient anatomy to the surgical field is challenging. The inability to completely navigate the
intrarenal collecting system leads to missed kidney stones and tumors, subsequently raising recurrence rates.
We propose a guidance system to estimate the endoscope positions within the CT to reduce re-operation rates.
We use a Structure from Motion algorithm to reconstruct the kidney collecting system from the endoscope
videos. In addition, we segment the kidney collecting system from CT scans using 3D U-Net to create a 3D
model. We can then register the two collecting system representations to provide information on the relative
endoscope position. We demonstrate correct reconstruction and localization of intrarenal anatomy and
endoscope position. Furthermore, we create a 3D map supported by the RGB endoscope images to reduce
the burden of mental mapping during surgery. The proposed reconstruction pipeline has been validated for
guidance. It can reduce the mental burden for surgeons and is a step towards our long-term goal of reducing
re-operation rates in kidney stone surgery.
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1 INTRODUCTION

Endoscopic surgery is the standard of care for the treatment of diseases of the renal collecting system such as stones and
tumors. By using small endoscopes, urologists can perform natural orifice procedures, minimizing morbidity for patients.
However, current endoscopes used in urological surgery have a limited depth and field of view, leading to impaired visibility
and complicating accurate localization within the intrarenal anatomy1,2. Furthermore, factors like organic debris and blood
clots (which increase throughout surgery) further impact visibility. Thus, completely visualizing the collecting system anatomy
during surgery often depends on the surgeon’s ability to transform and mentally register a series of 2D preoperative axial
computerized tomography (CT) images of the patient’s anatomy to the endoscopic surgical field. Since mental mapping relies
on hand-eye coordination, memory, and spatial reasoning based on preoperative imaging in a branched intrarenal collecting
system, it is inherently imprecise and dependent on surgeon experience. This can lead to poor coverage of the kidney during
stone identification phase of the kidney stone surgery. Residual stones or tumors can be left behind by the surgeon in unexplored
branches of the collecting system, ultimately leading to a need for re-operation.

Novel contribution of our paper. We propose a pipeline to integrate preoperative CT information and endoscopic videos.
This is a step towards providing intraoperative guidance based on 3D models from pre-operative imaging. Our algorithm can
show the endoscope pose within a patient-specific 3D map, supported with RGB endoscopic images within the collecting system.
This can mitigate the effects of any in vivo endoscopic visualization difficulties, enhancing intraoperative navigation during
endoscopic surgery. This study presents a novel application for the combination of methods and their evaluation. To the extent of
our knowledge, this is the first study to evaluate, create, and use complete reconstructions of the kidney collecting system.
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1.1 Previous work in endoscope image localization

Previous works related to endoscope localization during surgery mostly rely on image matching between real endoscope frames
and rendered images. Otake et al. propose a pipeline that estimates the camera position by calculating the similarity between
the rendered and real endoscopic images in sinus surgeries3. Similar approaches are used in bronchoscopy4,5 and in other
sinus procedures6. While these methods may give a fair estimation of the endoscope position in each frame for air-way-based
procedures, visual challenges, such as fluid motion and organic debris seen in Fig. 1, in endoscopic kidney surgeries lead to a
greater difference between rendered and real images. When the similarity is lower between the rendered images and surgery
videos, they cannot be matched accurately. These problems also decrease the accuracy of depth estimations and hinder the use
of depth-based registrations. Han et al. suggest a Structure from Motion (SfM) 3D reconstruction-based method to register
endoscope images to CT scans7 but the reconstruction is limited to only small portions of the structure and a complete mapping
is not created from endoscopic images. Therefore, it requires a multi-branch structure, where registration and localization are
limited to the branch openings.

1.2 Previous work in structure from motion

SfM algorithms are widely used for the 3D reconstruction of internal structures. These algorithms detect the feature points
in each frame and find the matches with others. Since they follow distinct features through motion, it is possible to obtain an
estimation of the camera position throughout the complete trajectory using the different viewpoints on the tracked features.
With advances in feature extraction and matching algorithms, the capabilities of SfM are increased. Bianco et al. compare the
SfM algorithms on a synthetic dataset containing real objects such as bicycles, cars, statues, etc. and conclude that COLMAP 8

performs best in many use cases among widely used algorithms9. Widya et al. implement reconstruction of the stomach using
COLMAP SfM10. Results were limited with raw endoscope images but the use of indigo carmine (IC) dye improved their
reconstruction. There is no similar dye used in kidney stone surgery. In follow-up work, results are improved using virtual IC
dye, and localization is achieved using the projection of the camera positions on the reconstructed meshes11. Nevertheless, a
lack of IC dye ground truth images and translation to the CT domain limits the usability of this algorithm for our task.

1.3 Previous work in improving feature detection

Endoscopic images lack distinct features such as corners and keypoints that can be observed in everyday objects. This limits
the usability of the algorithms that use image features in endoscopic images (i.e. SfM, SLAM) but results can be improved
using additions to the structure such as IC dye and relatively easy applications of image processing. With the presence of
liquid flow and organic debris (Fig. 1, a and b) and without visually identifiable landmarks and supporting factors, feature
detection in kidney endoscope images becomes a different challenge than other internal structures. While default reconstruction
on COLMAP uses scale-invariant feature transform (SIFT)12 to detect and match the features, it fails to create a complete
reconstruction of the kidney collecting system due to the mentioned difficulties. Pixel-Perfect SfM13 refines the keypoint, uses
bundle adjustments, and allows easier implementation of SuperPoint feature extraction14 and SuperGlue feature matching15 by
using the Hierarchical Localization Toolbox16. In their comparison, Superpoint and SuperGlue algorithms perform best in the
accuracy and completeness of 3D reconstruction.

In this paper, we propose a pipeline for determining the pose of the endoscope within a 3D patient-specific model based solely
on the endoscope images. This is the first step towards creating an intraoperative tool to reduce the mental burden for clinicians
to mentally match the 3D pre-operative CT scan to the intraoperative endoscope image. It can help achieve more thorough
coverage of the kidney by indicating which parts have already been explored on the 3D model and thus reduce reoperation rates
in kidney stone surgery.

2 METHODS AND RESULTS

The overall goal of our work is to find the position of the endoscope within the CT scans. As the pipeline has several components
that are considered separately, we combine our method and results section and instead separate it by component. We first
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F I G U R E 1 Examples of real and rendered endoscope video frames. Organic debris and the flow of the liquids in real
endoscope videos hinder the reconstruction.

automatically segment the CT scan using 3D U-Net17 to create a patient-specific 3D kidney collecting system model. We
then reconstruct a 3D model from the endoscope images using SfM. The SfM algorithm estimates the endoscope trajectory in
addition to reconstructing the collecting system model. After segmentation and reconstruction, we use 3D registration to align
the reconstructed model from the endoscope to the segmented model from the CT scan (Fig. 2). This allows the surgeon to see
where the endoscope is located within the collecting system, as well as what segments of the kidney have been explored so far.

2.1 Automated Segmentation and 3D Modeling of Collecting System

In the first stage of our pipeline, we segment the collecting system from CT scans and use 3D modeling to create the registration
baseline. We first segment the entire kidney from CT scans using a 3D U-Net model, which is widely used in many different
application areas, including medical image segmentation18,19. To decrease the noise arising from the relatively small size of the
collecting system, we extract the target structure as a post-processing step.

Our dataset contains 17 delayed-phase CT scans with a combination of healthy visitors and patients diagnosed with upper
tract urothelial carcinoma and kidney stones. A graduate student labeled the scans with the assistance of a surgeon, using
ITK-SNAP20. First, we scale the scans to 256 × 256 × 256 voxel size. To increase the sample size, we applied augmentations
such as random cropping, intensity shifts, and affine transformations.

In model input, we use 128 × 128 × 128 patches and train the model using MONAI21. We use sliding window inference for
prediction with a 0.5 overlap ratio and train the model using 6-fold cross-validation, with 11 train 3 validation 3 testing samples
at each fold. For collecting system extraction, we perform dilation with a 5 × 9 × 9 kernel and a three-class Otsu thresholding22

on the segmented kidney. We select the area with the highest intensity for the collecting system, as a result of the accumulation
of contrast material in delayed-phase CT. For final results, we acquired average Dice scores of 0.842 ± 0.139 for the whole
kidney and 0.853 ± 0.084 for the collecting system.

For the 3D modeling of the system, we create a 3D mesh from segmented CT scans using 3D Slicer23 model maker, which is
an implementation of marching cubes 24. As the last post-processing step, we dilate the structure by adding the normal values to
the coordinates of each vertex using Meshlab25, to account for the expanded kidney during the operation due to irrigation.

2.2 3D Reconstruction

3D reconstruction from endoscopic images is inherently difficult as the visualized features are not always distinct. The goal of
this section is to explore whether the fundamental structure in kidneys (i.e., infundibula draining calyces and renal papillae to the
renal pelvis), provides sufficient features for existing reconstruction algorithms. In addition, we target pathological kidneys with
stones, which may provide additional features for reconstruction. We compare the reconstruction performances of the widely used
regular COLMAP8 pipeline with the Pixel-Perfect SfM13 framework. In our comparisons, we used COLMAP with SIFT and
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CT Scans Segmented Kidney 3D Structure

Endoscope Images 3D Reconstruction Endoscope Registration to CT

Segmentation 3D Modeling

Structure from
Motion

Registration

Automated segmentation and 3D modeling of CT (Section 2.1)

Kidney reconstruction from endoscopy (Section 2.2) Registration of two structures (Section 2.3)

F I G U R E 2 General workflow of the algorithm. We use an automated segmentation algorithm to create a 3D model of the
kidney collecting system, while the SfM algorithm creates a 3D reconstruction from endoscope videos. Kidney reconstruction is
registered to the 3D structure generated by CT, the blue point cloud represents sampled CT structure and the yellow point cloud
represents the volume covered in the endoscope video.

Pixel-Perfect SfM with SuperPoint14 and SuperGlue15. We also evaluated the performance of SuperPoint and Superglue without
the Pixel-Perfect refinement. To test the success of reconstruction and registration without considering the challenges endoscope
videos pose for feature detection, (Fig. 1) first, we applied the 3D modeling stages explained in previous section to a manually
segmented CT scan. Then, we rendered a camera trajectory on the mesh of the kidney using the 3D Slicer endoscope module.

The rendered endoscope trajectory avoids confounding factors for feature detection such as liquids or floating debris. We
evaluated the algorithms both qualitatively and quantitatively in three real endoscope videos and two rendered ones. Tab. 1
shows the total number of frames extracted from the videos, those successfully used in the reconstruction, and the number of
reconstructed points. Note that while the algorithms may produce more than one reconstruction, we select the one with the most
images to use in comparisons.

For our task, acquiring a complete overall reconstruction is more important than having a detailed reconstruction of a smaller
area. In general, methods using SuperPoint and SuperGlue give better results on the reconstruction matching our aims. We
observe from Fig. 3 that b) and c) created more complete reconstructions of the collecting system structure whereas a) only
reconstructed a small portion.

Refinement features of Pixel-Perfect may improve performance and decrease noise and also eliminate weaker reconstructions
(e.g., Real 1 column in Tab. 1). Even though SuperPoint and SuperGlue have higher reconstruction rates for some cases, the
resulting point cloud may not contain enough structure to be useful for the rest of the algorithm (Fig. 4). Since denoising is a
useful feature in registration and weaker reconstruction remains a limitation for the whole method, we decided to proceed with
the Pixel-Perfect algorithm. However, SuperPoint + SuperGlue pipeline without refinement can be used as an alternative when it
finds a non-trivial reconstruction.

For the analysis of the complete pipeline, after institutional review board approval, we collected a matching endoscope video
and CT scan (dimensions 512 × 512 × 82 voxels and voxel spacing 0.76 × 0.76 × 5 mm3) set for a patient undergoing kidney
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T A B L E 1 Comparison of Structure from Motion algorithms. Each column indicates a different input video. With an
increasing number of images, more information coming from different frames is used which results in wider coverage.
Reconstruction percentage gives the ratio of successfully used frames in reconstruction to total frames. More points also indicate
more features found and matched, leading to more details. Bold values shows the best result for the corresponding input video.

Rend. 1 Rend. 2 Real 1 Real 2 Real 3
Total Images 454 542 1253 1454 1966
COLMAP
Reconstructed Points 6117 3558 45800 119542 92709
Reconstructed Images 124 75 414 414 301
Reconstruction Percentage 27.31% 13.84% 33.04% 28.47% 15.31%
SuperPoint + SuperGlue
Reconstructed Points 32679 52681 6740 172552 11845
Reconstructed Images 241 344 573 1402 565
Reconstruction Percentage 53.08% 63.47% 45.73% 96.42% 28.74%
Pixel-Perfect
Reconstructed Points 32924 52508 30 175293 7315
Reconstructed Images 241 347 12 1406 410
Reconstruction Percentage 53.08% 64.02% 0.96% 96.70% 20.85%

F I G U R E 3 Reconstruction results from different algorithms. COLMAP manages to create a partial reconstruction of the
images while other algorithms reconstruct all the branches covered in the endoscope video and have a higher coverage.

stone surgery. We test the proposed method with a real endoscope video of 97 seconds and 30 FPS. After extracting the video
frames and downsampling them by 2 for faster processing, we acquire 1253 endoscopic images. We create the reconstructions
using the Pixel-Perfect SfM pipeline with SuperGlue and SuperPoint feature extractor and matching algorithms.

In order to compare and test the reconstruction capabilities under ideal conditions, we apply another reconstruction to a virtual
endoscope video since the reconstruction of rendered images is easier without liquid and organic debris, and with meshes on the
structure for easier feature detection. We use manually segmented and undilated CT for the rendered endoscopy tests. After the
extraction of frames and sampling, we acquired 454 virtual endoscopy images. Since the rendered endoscope video covers the
whole structure and contains more detectable features with the presence of meshes and without real-life challenges, a better
point cloud representing the complete structure is achieved. For the real endoscopy video, all the branches visible in the video
are reconstructed correctly as well (Fig. 5).

2.3 Registration and Localization

To localize the endoscope pose within the CT and create the final 3D map, we next register the point cloud reconstructed from
SfM to the CT domain using Open3D26. We start the registration procedure with voxelization of the 3D structure achieved from
CT scans and downsample both structures as preprocessing steps. Then, we estimate the normals of input point clouds and
calculate Fast Point Feature Histograms (FPFH)27 for each point. Since the reconstruction may end up with outlier points that
disturb the flow of the registration, we apply a radial nearest neighbor filter. With the use of this filter, we only preserve points
that have a neighbor within a specified radius and discard the rest. For global registration, we first tried applying RANSAC28
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F I G U R E 4 SuperPoint + SuperGlue failure case. While raw version (a) includes more points and images, fails to create a
useful structure for registration. Refined version (b) gives a better outline of the kidney for camera position localization.

F I G U R E 5 Reconstruction results for rendered and real images. Red marks represent the camera trajectory and frames used
in the reconstruction of the particular area.

with the steps explained in Open3D documentation †, which refers to Choi et al. for the parameters29. However, the global
registration phase requires a good initialization on the scales. This may be unavailable due to deformations of the kidney as it
is filled with fluid during the operation. As a result, while this registration works well for rendered images and structures, we
observed instability and changing results for the real reconstructions. Also taking the accumulating errors from segmentation
and reconstruction into account, we manually tune the scales of the point clouds by using the dimensions of two point clouds as
a reference and select corresponding reference points from both structures using a simple user interface. We use the manually
selected correspondences for initial point-to-point registration, replacing RANSAC for global registration in real endoscope video
tests. While the general dimensions are useful in estimation, they cannot be directly used in the case of partial reconstructions,
and manual intervention is needed. As a final step to acquire the transformation, we apply Iterative Closest Point (ICP)30 for
refinement. We use the transformation we acquire on the point cloud of the reconstruction and the camera positions given
by SfM. Using the camera pose estimation feature of the SfM, we achieve an endoscope position estimation for each frame.

† http://www.open3d.org/docs/release/tutorial/pipelines/global_registration.html
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On the resulting registration, coverage of endoscope videos, endoscope tip positions for each endoscope frame used in the
reconstructions, and the general path of the endoscope can be easily observed (Fig. 6).

(a) (b)

3D Structure from CT

Reconstruction

Camera trajectory

F I G U R E 6 (a) Final results of the algorithm for real endoscope images from different angles. (b) Results for the rendered
videos. The blue point cloud shows the CT model, the yellow point cloud shows the reconstruction, and the red marks indicate
the camera path. Each red dot represents a frame used in the reconstruction.

Analysis of the registration is limited since the acquirement of real-time tip position in current practice is not possible. The
accuracy of the registration can be inspected visually and using the metrics of the registration algorithm. Tab. 2 shows the root
mean square error (RMSE) values and the ratio of the points considered as inliers by the Open3D algorithm to all points in
the reconstruction. We observe sub-millimeter errors in the registration of both reconstructions, while the inlier to total points
ratio is lower in real endoscope reconstruction. Values and visual representation of the rendered video could be considered as
reference points due to the lack of ground truth, while the differences may come from the deformation of the kidney.

T A B L E 2 Quantitative results for registration using Open3D. Inlier RMSE shows the Root Mean Square Error calculated
from the points considered as inliers and Inlier Points/Total Points shows the ratio of these points to all points in the reconstruction
point cloud.

Inlier RMSE Inlier/Total Points
Rendered Video 0.4335 mm 28305/52508
Real Endoscopy 0.7052 mm 70988/175293

The runtime of the complete algorithm is around 8 hours for a workstation with Intel Xeon Processor E5-1630 v4 and NVIDIA
Titan V running on Ubuntu 20.04 when the images are used in maximum quality and the default parameters are selected for the
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reconstruction. We note that there is a trade-off between the reconstruction quality and duration, depending on the system used
and the required quality this duration may vary.

3 DISCUSSION

We present a 3D map that can aid mental mapping and act as a reference intra-operatively during endoscopic kidney surgery. Our
qualitative result demonstrates that our reconstruction has good coverage of the kidney collecting system and our quantitative
results show that the reconstruction is sufficient for accurate registration to the preoperative CT. In current practice, visualization
of the anatomy highly depends on the surgeon’s skill. However, as tumor/stone or collecting system complexity increases,
mentally registering preoperative kidney tumor/stone information to the endoscopic anatomy becomes difficult, causing a surgeon
to incompletely treat these pathologies31. Endoscope images present a very limited field of view and depth of field (10 mm and
6 mm on average, respectively). By registering endoscopic surgical video to segmented, preoperative CT images, we create a
navigational system that notifies a surgeon of the endoscope and tumor/stone position within the collecting system to facilitate
treatment. Furthermore, in patients undergoing endoscopic surveillance procedures for kidney tumors, image matching could be
used to allow for localization of previous sites of tumors and evaluate for recurrence. The patient-specific map, supported by
endoscope RGB images can be used to create patient-specific surgical plans. Such technology could also be used to aid in future
autonomous surgical systems.

Despite the potential of our technology, there are several limitations. First, reconstruction and map generation capabilities are
highly correlated with video qualities. Fluid motion and organic debris also introduce difficulties in accurate reconstruction for
endoscopic renal surgery. We may get false feature matches for stones and debris, which are not in the mesh extracted from CT.
We also observe deformation in the reconstructed structure such as contractions in the volume due to fast camera motion. While
any deformation makes the registration process harder, we use partial registrations to circumvent inexact matches. We break the
reconstruction point cloud into pieces to overcome contractions and extensions in the branches while preserving the landmark
points such as branch openings. Additionally, we apply dilation to the 3D model obtained from the CT scans to account for the
volume changes due to irrigation.

Although we obtain sub-millimeter registration errors, evaluation is limited since ground truth information for camera positions
is not available in current practice. We plan to extend our testing with realistic phantoms and ex-vivo studies, where we can
have better control over camera trajectories and collect ground truth data for camera positions. Based on our current evaluation,
high accuracy registration is not needed for having a general idea about camera trajectory and the assessment of major calyces
coverage. However, higher registration accuracy would enable a more detailed analysis of minor calyces. Future work can focus
on using anatomical landmarks or known camera positions such as start and end points for initialization of registration and
increased accuracy.

While our pipeline currently does not support real-time processing, the acquired patient-specific map can be used as a guidance
tool in future surgeries. It can also be used for evaluation of operation success as indicated by the percentage of the kidney
collecting visualized during the surgery. It can provide real-time localization and has distinct landmarks according to the patient
anatomy. Future work may include applying a filter to reduce the noise in the images or training feature extractors on kidney
endoscope image-specific landmarks to reconstruct 3D volume from lower-quality videos. Furthermore, we are working on
simultaneous localization and mapping (SLAM) algorithms and improvements in the registration method such as using more
advanced algorithms or automatic scaling to make this pipeline completely automated and real-time.

4 CONCLUSION

In this work, we combine the information from CT scans and endoscope videos. We create a 3D reconstruction of the kidney
collecting system using SfM and register it to the 3D structure created with the automated segmentation of kidney CT scans.
Furthermore, we localize the endoscope pose in the CT domain. We create a 3D mapping of the kidney supported by the visual
information from the endoscope images, which can be used as landmarks for any future surgeries. Finally, we represent the
surgeon’s coverage of the branching structures inside the kidney during the endoscopy procedure. This work is a step towards a
3D guidance system for endoscopic kidney surgery. By registering the endoscope video to the CT image, we reduce the mental
burden for clinicians to maintain a mental 3D anatomical model. This has the potential to improve navigation during endoscopic
kidney surgery and reduce re-operation rates.
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