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Abstract
Generalisable and accurate stereo depth estimation is vital for 3D reconstruction, especially in surgery.
Supervised learning methods obtain best performance however, limited ground truth data for surgical scenes
limits generalisability. Self-supervised methods don’t need ground truth, but suffer from scale ambiguity
and incorrect disparity prediction due to inconsistency of photometric loss. In this work, we propose a two-
phase training procedure that is generalisable and retains the high performance of supervised methods. It
entails: (1) Performing self-supervised representation learning of left and right views via Masked Image
Modelling (MIM) to learn generalisable semantic stereo features (2) Utilising the MIM pre-trained model
to learn robust depth representation via supervised learning for disparity estimation on synthetic data only.
To improve stereo representations learnt via MIM, we introduce perceptual loss terms, which improve the
model’s stereo representations learnt by explicitly encouraging the learning of higher scene-level features.
Qualitative and quantitative performance evaluation on surgical and natural scenes shows that our approach
achieves sub-millimeter accuracy and lowest errors respectively, setting a new state-of-the-art. Despite not
training on surgical nor natural scene data for disparity estimation.
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1 INTRODUCTION

Depth estimation is of paramount importance in Minimally Invasive Surgery (MIS) facilitating, soft tissue 3D reconstruction,
surgical robot navigation and augmented reality. A popular method of perceiving depth is with a stereo camera by estimating
the horizontal displacement (disparity) from the left image pixels to the corresponding right. End-to-end deep learning stereo
reconstruction methods have become state-of-the-art. They are typically categorised as supervised and self-supervised. Supervised
learning methods directly predict disparity (regression) by training on ground truth disparity data1 2 3 4. They usually undergo
training using synthetic data5, followed by fine-tuning on real-world scenes to overcome the limited availability of ground truth.
Despite their popularity, they face several challenges in surgical applications. Discrepancy between training and inference data,
limited ground truth data, lower image quality, restricted space, and a multitude of scene variations, are factors that lead to
reduced performance.

Self-supervised methods don’t require ground truth disparity, making images-only training data abundant. These methods
optimise photometric re-projection error through novel view synthesis.6 7 8 9 10. Self-supervised methods show potential, but are
not as effective as supervised methods. This is because the photometric error can be optimised for a large range of disparity
values, resulting in inconsistent geometry. Furthermore, the relative depth information between stereo images is inherently
scale ambiguous. Making it challenging to learn robust representation of depth via self-supervision, especially in scenes with
occlusions, textureless regions, or repetitive structures, which is prevalent in surgery. Supervised learning is key for robust stereo
depth, since training on ground truth provides a strong, unambiguous signal for learning accurate representations. A question

Abbreviations: StereoMAE, Stereo Masked Autoencoder; MIM, Masked Image Modelling; MIS, Minimally Invasive Surgery.
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emerges though; can we have the best of both worlds i.e. unambiguous depth that is also generalisable to different scenes?
For achieving generalisability, visual representation learning is key. Learning robust feature representations also allows improved
downstream performance as shown in11 12 13. These techniques utilise image reconstruction as a preliminary task, relying on the
principle that by learning to predict patches in a masked image, useful representations about the context of the scene can be
obtained for further tasks. This is proven by the enhanced data label efficiency on various standard benchmark datasets. Hence,
in this work we experiment with this masked image modelling (MIM) approach, to train an encoder model to learn stereo feature
representations, that can be fine-tuned downstream to encode robust depth feature representations. This endows our model with
both generalisable features via MIM and unambigous sharp depth via supervised-learning for disparity estimation.
In this paper we build on11 and propose StereoMAE a two-stage training process which entails (1) training an encoder via MIM,
to generate robust feature representations for left and right views, followed by (2) supervised training for disparity estimation.
Furthermore, we enhance MIM in (1) by using perceptual similarity learning14, leading to learned representations that effectively
capture the intricacies of the scene and object boundaries without explicit guidance or manually designed inductive biases. Our
contributions are the following:

• A novel approach for training stereo depth models by combining self-supervised MIM and supervised stereo depth estimation.
To the best of our knowledge, this is the first work to apply MIM for stereo depth estimation;

• We propose a new approach to boost MIM by incorporating perceptual similarity loss term for learning generalisable visual
semantic concepts;

• We present a modular model architecture for combining any pre-trained MIM encoder model with any off-the-shelf decoder
to enhance depth estimation;

• Our joint MIM-supervised approach enhances performance, yielding a generalisable model with sub-millimeter accuracy in
surgical depth estimation

Specific to the field of surgery the lack of datasets with ground truth, restricts state-of-the-art stereo models from reaching
sub-mm precision on surgical scenes despite their generalisability. This is due to the need for deep understanding of scene
semantics, a task beyond the capabilities of supervised learning alone. Hence, our method pairs Masked Image Modelling
(MIM) with StereoMAE model architecture, and perceptual learning to surmount the limited training data issue, achieving high
generalisability and sub-mm accuracy in surgery. This blend of generalisability and precision offers a significant advantage,
expanding its potential use across diverse medical imaging tasks, not just specific surgical scenarios like Laparoscopic surgery
where depth estimation at sub-millimeter accuracy is critical as it helps the localization and perception of surgical instruments,
tumour and surrounding healthy tissue (essential in the development of autonomous task execution in Robotic MIS). The
performance of StereoMAE has been evaluated on (3) MIS datasets; SCARED15, Hamlyn16 and SERV-CT 17, and on (2)
non-surgical scenes data; ETH3D18 and Middlebury19.

2 METHODS

The method is divided into two phases; (1) Pre-training via MIM for enhanced representation learning followed by (2) supervised
downstream fine-tuning for stereo depth estimation. The learning framework for (1) is inspired by MAE11. Supervised training in
(2) is based on RAFT-Stereo1. However for (2) any training methodology from the supervised stereo depth literature can be used.

(1) Stereo Masked Image Modelling: MIM involves randomly masking pixels of an input image and training a model to
predict the invisible content11 12 13. The intuition is that the model learns the representation of the masked pixels by inferring
details from the surrounding valid pixels. In the end, if a model is capable of reconstructing the missing content with valid pixels,
the model has learnt the context within the image by encoding its semantic features.

We adapt the method in11, which utilises an auto-encoder model for stereo images as shown in Figure 1. In particular, we
construct the auto-encoder model, using vision transformer (ViT) components20. The encoder consists of several layers of
ViT-Base (ViT-B), a 12 layer transformer model. The custom decoder is composed of 8 transformer layers. Given the left image
as input, it is first resized to 224x448, divided into patches of size 16x32 and 75% of them are randomly masked. The encoder is
fed only the un-masked patches as input, and it generates corresponding features representing the visible scene parts. These
features are then concatenated with the patches that were not fed into the encoder and inputted into the decoder to reconstruct
the full left image as output. The model is trained via pixel image reconstruction (photometric error). The same is done for the
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F I G U R E 1 Masked Image Modelling (MIM) pipeline for StereoMAE comprising of a weight sharing transformer encoder-
decoder model. Where N and D are the total number of transformer layers that make up the corresponding models.

right input image. For the left and right input views, the weights of the encoder and decoder are shared, allowing them to learn
joint global stereo representations for reconstructing the scene.

In our work, we do not train the aforementioned model using the mean square error (MSE) loss from the original work11.
MSE, which compares pixel intensities, is a low-level metric and insufficient for capturing complex structures in an image as it
assumes pixel-wise independence. Hence a model’s capacity is wasted since high frequency global feature distribution will not
be captured. Perceptual similarity, which mimics human visual perception21, is a better metric for evaluating image similarity
and capturing high-level semantic features, essential for model generalization. Hence, we hypothesise, that training MIM with
perceptual similarity will enhance the models’ output quality and coherence. The focus is on learning high-level relationships
between elements in the image, not just low-level details. Thereby reducing the model’s vulnerability to masked regions and
improving overall semantic content and structure capture.

Therefore, to train StereoMAE we utilise a perceptual loss for MIM for learning the required high-level semantic features that
represent the scene context (thereby improving its downstream generalisability). Inspired by14 our perceptual loss comprises of
three loss terms: (i) L1 (also known as absolute error loss, measures the absolute difference between the predicted and actual pixel
values, calculated as the sum of the absolute differences between the two values). (ii) Feature matching (compares intermediate
features from a pre-trained model like VGG, to encourage learning similar features for the predicted and actual pixel values).
Lastly, (iii) style transfer loss (computes correlations between feature maps extracted from a model like VGG, encouraging the
predicted and actual image distributions match). L1 loss encourages sparse representations by optimizing absolute intensity
values. The feature matching loss compares the feature representations of the reconstructed output and target image, while the
style loss measures the difference in statistical distribution of high-level feature activations, capturing image texture and aesthetics.
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F I G U R E 2 The downstream process of supervised stereo depth estimation training. Where the feature extractor encoders pre-
trained from MIM, are packaged with an off-the-shelf decoder for depth estimation. Any decoder of user’s choice can be used.

To calculate (ii) and (iii) we utilise a pre-trained feature extractor model i.e. VGG16 (though any arbitrary model can be used).

LI
mim = ||G(Im) – I||1 + δf

J∑
j=1

1
Nj

[||ϕj(G(Im)) – ϕj(I)||1]

+δs

J∑
j=1

1
Nj

[||Ψ(ϕj(G(Im))) – Ψ(ϕj(I))||1]

(1)

where, I is the original input image, Im is the masked input image, G is the StereoMAE model, ϕ is the feature extractor model
and Ψ is the gram matrix. The loss weights δf and δs are 0.05 and 40.0, respectively. These weightings were selected via
experimentation on our dataset (discussed in Implementation Details section). The initial values were inspired by previous
research in generative modelling22,23. Lmim is calculated for both the left and right views, making the full MIM loss for
StereoMAE the following:

Lmim = LIL
mim + LIR

mim (2)

where, IL and IR are the left and right input views, respectively. MIM training was performed on a mixture of real natural and
synthetic scenes (no surgical scenes were used).

(2) Supervised Downstream Fine-tuning: Once the encoders have been pre-trained via MIM in phase (1) we finetune them
for disparity estimation. The full model architecture for downstream training is displayed in Figure 2. The architecture is designed
to be modular such that the pre-trained encoders can be combined with any off-the-shelf decoder of the user’s choice. Thereby
enabling a smooth transition from MIM to disparity estimation without further modifications. The pre-trained ViT encoders
generate features for the (un-masked) left and right input images, and output a 3D tensor. The features have to be reshaped into a
4D tensor for it to be processed by the decoders which are typically composed of convolution layers. However, once reshaped,
the positional encodings of the features change. To ensure the decoder focuses on the necessary elements of the feature map, we
parse the feature map through a Feature Converter block; its purpose is to learn the transfer of MIM-trained features to stereo-
disparity features and select the relevant elements needed for the decoder. It comprises of two 5x5 2D convolution layers and a
bilinear interpolation module that resizes the tensor to a scale of choice. The scale depends on the type of decoder used. In our
experiments we utilise the RAFT-Stereo decoder1. The Feature Converter block essentially plays a crucial role in ensuring the
appropriate transfer and transformation of features from the pre-trained ViT encoder to the disparity decoder. In our experiments
this is vital as the encoder is trained only for the MIM task, hence the features must be adapted for disparity downstream.

To train the final model we utilised a supervised-learning loss comprised of the L1 error between the predicted and ground
truth disparity. The RAFT-Stereo decoder generates a sequence of predictions (from its multi-level GRU networks), hence our
L1 error is computed over the full sequence of predictions, [d1

p , ..., dN
p ], with exponentially increasing weights. If a different
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decoder that outputs a single disparity map is generated then, only the final single output dp would have been used for the loss
calculation. Considering ground truth disparity is defined as dgt, the loss is defined as

Lsup =
Y∑

i=1

γY–i||dgt – di
p||1 (3)

where, γ = 0.9, is the weighting factor for the loss calculated for each scale and Y is the total number of scales. The supervised
training for disparity estimation was only conducted on synthetic scenes (no surgical or natural scenes were used).

Implementation Details: For MIM training, we use the ViT-B architecture11, trained for 150 epochs on a combination of the
following datasets24 25 26 27 28 (a total of 411,942 stereo image pairs). The input patch size is fixed to 16x32 and we mask 75% of
input patches during training. The ViT-B encoder, comprises of 12 transformer layers (N), each with 12 self-attention heads and
the final hidden dimension output is of size 768. The decoder architecture comprises of 8 transformer layers (D) each with
16 self-attention heads and the hidden dimension output of size 512. The data augmentation strategies include (1) resizing /
cropping image to 224x448, (2) adding random distracting shapes like rectangles of varying size and (3) random colour jittering.
We train with a batch size of 8 on 4-Nvidia Tesla GPUs. Adam optimizer with a learning rate of 0.00015, and weight decay of
0.05 (cosine strategy), 40 warm-up epochs and the momentum parameters β1 and β2 are 0.9 and 0.95 respectively were used.
For downstream training, the pretrained ViT-B model is used as feature extractor with the RAFT-Stereo decoder architecture,
for disparity estimation. The same training strategy as1 was utilised, though since our model is modular, it can be combined
with any downstream stereo-decoder model and training method. For the downstream training of disparity estimation, only the
Sceneflow training split25 was used (a combination of FlyingThings, Monkaa and Driving). Hence, only synthetic data was used
for training. Note, synthetic data is used for perfect, unambiguous ground truth disparity. Synthetic surgical scenes can also be
used for training, provided high quality disparity maps are available. Once, trained inference operates at 14 frames per second
(fps) on a single Nvidia Tesla GPU (where frames here includes both left and right pairs).

3 EXPERIMENTAL RESULTS AND DISCUSSION

We evaluated the performance of our model on both surgical and natural scenes, despite not training on them. The following
datasets were used for testing; SCARED, Hamlyn, SERV-CT, ETH3D, and Middlebury datasets. To compare our results with
other methods in the literature, we calculate the standard metrics for stereo disparity evaluation i.e. average End-Point-Error
(EPE) and the percent of pixels with EPE greater than a specified threshold (0.5, 1.0 and 2.0). Specifically for SCARED and
SERV-CT, we also calculate the mean absolute depth error in mm on test sets 1 and 2. We also exhibit qualitative performance of
our MIM pre-training and downstream disparity estimation in Figures 3 and 4. Furthermore, due to lack of ground truth available
in Hamlyn MIS data we show qualitative downstream performance comparison with other SOTA methods in Figure 5.

T A B L E 1 Results of generalisation without fine-tuning on ETH3D, Middlebury, and SCARED datasets. Lower is better for
all metrics. Method highlighted in bold is best.

Method
ETH3D Middlebury 2014 (H) SCARED Small

EPE 0.5 px 1 px 2 px EPE 0.5 px 1 px 2 px EPE 3 px
(pixel) (%) (%) (%) (pixel) (%) (%) (%) (pixel) (%)

LEAStereo 29 0.63 22.50 8.54 3.94 3.20 49.44 28.51 16.03 22.62 27.07
STTR 30 1.29 30.37 11.33 4.85 2.22 40.30 22.00 12.21 6.03 9.52

RAFT-Stereo 1 0.27 8.10 2.33 0.96 1.12 24.28 14.02 8.43 1.16 4.59
StereoMAE 0.22 6.77 2.10 0.78 0.98 22.14 11.33 7.39 0.96 3.94

Figure 3 compares the reconstructed outputs of StereoMAE trained via the MSE loss from11 and the proposed perceptual
loss, on unseen datasets. It can be observed that StereoMAE trained with perceptual loss outperforms MSE in all scenes. When
using perceptual loss, we observe significant increase in the fidelity of the reconstructed patches with finer textural and structural
details. Exhibiting perceptual loss aids the model in learning higher-level feature representations that can generalise to any scene



6 ET AL.

F I G U R E 3 Reconstructions of the left images on (A-B) SCARED and (C-D) Middlebury samples. Results of MIM pre-
trained StereoMAE via Mean Square Error loss11 and the proposed perceptual loss shown in 3rd and 4th columns, respectively.
The inputs were masked at 75% mask-to-image ratio. StereoMAE was not trained on these datasets.

type despite never having observed surgical scenes. When finetuned for disparity estimation, StereoMAE visibly generates
sharper depth maps despite only being trained on synthetic data, as shown in Figure 4. Specifically, in sample A, StereoMAE
generates the fine details on the robotic tool, whereas other methods either fail to achieve the correct disparity range or miss
fine details around the edges. Similarly in B and C, StereoMAE generates less holes around the edges, as can be seen in the
wheels / handle of the bike in B and the structures in the background in C. Hence, by learning a generalisable feature distribution
for stereo image representations and disparity estimation, without any training on datasets from Figure 4, StereoMAE creates
smooth yet fine disparities. We also conducted an ablation study by creating a new StereoMAE variant. It pairs the StereoMAE
encoder with HITNet’s decoder4, fine-tuned on the Scene Flow dataset. It outperforms the original HITNet model in ETH3D,
Middlebury and SCARED evaluations, confirming our method’s decoder-independence and effectiveness in enhancing any
decoder for disparity estimation. Original HITNet achieves EPE of 0.31, 1.62 on ETH3D and Middlebury, respectively and
4.12 mm depth error on SCARED. Whereas our variant achieves 0.25, 1.27 and 2.98 mm error, respectively. Our approach, as
demonstrated in Figure 4, is independent of baseline, lighting, image type (like ETH3D’s grayscale), or specific scene types.
Despite training solely on simulations, it attains sub-mm accuracy (shown in Tables 2 and 3) on surgical scenes, delivering SOTA
performance on simulated, natural, and surgical scenes alike. Affirming the significance of learning deep semantic features via
MIM in pre-training encoders. This is further reflected in Figure 5 where it is clear samples A, B and E StereoMAE generates
sharper details around the background anatomical structures and the edges of the robotic tools. Furthermore StereoMAE in
sample D resolves disparity for the anatomical structures and the left-robotic tool even in the presence of smoke. Despite not
training on surgical scenes, StereoMAE consistently outperformes competitors by generating sharper disparity maps under
challenging lighting conditions and image resolution.

The quantitative evaluation in Tables 1, 2 and 3 also show our model outperforming previous state-of-the-art stereo depth
estimation models in Stereo-benchmark datasets. StereoMAE achieves lower EPE across the board on all datasets, despite not
being trained on them. In Table 1, SCARED benchmark only shows EPE and 3px error as they are the most commonly reported



StereoMAE: Generalisable Stereo Depth Estimation with Masked Image Modelling 7

F I G U R E 4 Left disparity outputs on (A) SCARED, (B) Middlebury and (C) ETH3D samples. All models were trained only on synthetic data.

by previous methods on this dataset30. Furthermore, as shown in Tables 2 and 3, StereoMAE also sets a new record on surgical
scenes, achieving sub-millimeter accuracy in depth estimation. This exhibits the importance of visual representation learning for
developing generalisable feature distributions, and still retaining the fine details of disparity estimation from supervised learning.
Enabling generalisability to surgical images, without training on them.

T A B L E 2 Mean absolute depth error (mm) on SCARED. Best results are highlighted in bold. None of the models were
fine-tuned on SCARED, inference only.

Methods
SCARED 2019 SCARED Small

Testdata 1 Testdata 2 Small 19 30

MAE (mm) MAE (mm) MAE (mm)
LEAStereo 29 3.82 4.51 1.48

STTR 30 4.14 5.91 11.31
RAFT-Stereo 1 3.74 4.28 1.01

StereoMAE 1.66 2.01 0.92

T A B L E 3 Mean absolute depth error (mm) and EPE on SERV-CT data. Best results are highlighted in bold. None of the
models were fine-tuned on SERV-CT, inference only.

Methods
SERV-CT

Experiment 1 Experiment 2
MAE (mm) EPE MAE (mm) EPE

LEAStereo 29 3.14 3.05 3.66 5.39
STTR 30 16.60 7.54 25.69 14.52

RAFT-Stereo 1 2.03 1.32 2.61 2.27
StereoMAE 0.99 1.06 1.19 1.68



8 ET AL.

F I G U R E 5 Left disparity outputs on the Hamlyn MIS data on different (A-F) samples. All models were trained only on synthetic data.

4 CONCLUSIONS

Accurate and generalisable stereo depth estimation is crucial for surgical applications. Supervised learning is effective but
limited by the scarcity of ground truth data in surgical settings, restricting their generalisability. Self-supervised methods have
issues with scale ambiguity and inaccurate disparity prediction. Our StereoMAE approach demonstrates that by integrating MIM
for feature representation learning with supervised depth estimation, achieves the benefits of both methods. Despite training
only on synthetic data, StereoMAE shows generalisability to surgical and natural scenes, achieving sub-millimeter accuracy in
surgical scenes. This is attributed to robust feature representations learned during MIM pre-training, which enhances the model’s
performance for subsequent tasks. Future work will explore alternative designs and loss terms to enhance MIM and improve
stereo depth estimation.
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