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Abstract
The integration of Augmented Reality (AR) into daily surgical practice is withheld by the correct registration 
of pre-operative data. This includes intelligent 3D model superposition whilst simultaneously handling real 
and virtual occlusions caused by the AR overlay. Occlusions can negatively impact surgical safety and as 
such deteriorate rather than improve surgical care. Robotic surgery is particularly suited to tackle these 
integration challenges in a stepwise approach as the robotic console allows for different inputs to be displayed 
in parallel to the surgeon. Nevertheless, real-time de-occlusion requires extensive computational resources 
which further complicates clinical integration. This work tackles the problem of instrument occlusion and 
presents, to our best knowledge, the first-in-human on edge deployment of a real-time binary segmentation 
pipeline during three robot-assisted surgeries: partial nephrectomy, migrated endovascular stent removal 
and liver metastasectomy. To this end, a state-of-the-art real-time segmentation and 3D model pipeline 
was implemented and presented to the surgeon during live surgery. The pipeline allows real-time binary 
segmentation of 37 non-organic surgical items, which are never occluded during AR. The application features 
real-time manual 3D model manipulation for correct soft tissue alignment. The proposed pipeline improves 
surgical safety and ergonomics and paves the way towards acceptance of AR in minimally invasive surgery. 
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1 INTRODUCTION

Over the last decade, 3D models have entered oncologic surgery as a means to achieve better outcomes in renal and hepatic
surgery1,2. Nevertheless, the integration of 3D models into the operative field has been lacking due to 3 main reasons. Firstly,
proper model alignment with the intraoperative anatomy has proven to be a major challenge due to shifting of organs during
surgery and different patient positioning in surgery versus during computed tomography2,3. Secondly, automated organ registra-
tion in a continuously moving surgical video has been another major challenge for many years4. Thirdly, 3D model overlay
obscures the surgical field, including sharp surgical instruments which are manipulated, hence creating a possible hazardous
situation rather than facilitating surgery. The latter occlusion problem has been a longstanding study topic5 which, if solved,
would further advance various surgical domains and applications6. Already in 2004, Fischer et al7 proposed handling instrument
occlusion in medical augmented reality (AR) through identification of occlusion zones by creating a virtual map of the existing
environment upfront. Four years later, Kutter et al.8 explored the design and implementation of a high-quality hardware system
to enable real-time volume rendering in AR applications. However, to ensure that depth perception was not compromised, the
authors needed to apply video color filtering to handle occlusion, as such limiting its robustness due to the color prior. Other
approaches9 for occlusion management relied on tracking and 3D positioning of the instrument within the AR environment,
which in turn made it prone to certain instruments’ directions. As such, previous de-occlusion attempts were unsuccessful
in detecting all surgical items with sufficient robustness, whilst at the same time having no prior knowledge of the objects’
orientations or positions inside the real-time surgical environment. More recent work10 showed the potential of deep learning
binary instrument segmentation for robust de-occlusion during AR surgery. However, the reported latency reached up to 0.5
seconds and was considered unfeasible for real-time surgical use.

In this work, a robust real-time binary segmentation pipeline for non-organic items was developed and deployed during
three live robot-assisted surgeries: partial nephrectomy (RAPN), migrated endovascular stent removal and liver metastasectomy.
Through the use of a state-of-the-art binary segmentation method, as well as software and hardware level acceleration, the
pipeline efficiently tackles instrument occlusion caused by the augmented reality 3D model overlay in real-time and reduces
delay to a frame-by-frame latency of 13ms. Qualitative surgical feedback stated the resulting perceived end-to-end latency is
acceptable for real-time surgery.

2 MATERIALS AND METHODS

2.1 Non-organic binary segmentation

The binary segmentation data set contains 31812 images on which all non-organic items were manually delineated in the
annotation platform SuperAnnotate (Sunnyvale, CA, USA)11. The 37 different non-organic items include robotic and laparoscopic
instruments, needles, wires, clips, vessel loops, bulldogs, gauzes, etc... The images were sampled uniformly across 100 full-
length RAPN procedures. The data set was split on a procedural base into 24087 images for training, 4545 images for validation,
and 3180 images for testing. Different encoder-decoder deep learning architectures were evaluated for performance. A Feature
Pyramid Network (FPN) architecture12 with EfficientNetV2 encoder backbone13 was identified as best performing in a separate
optimization study. The model was trained over 50 epochs with batch size 16 and image size 512 x 512 pixels, using Adam
optimizer with a learning rate of 2.25 x 10–4 and a combination of focal and dice loss. The learning rate was reduced on plateau
over 5 epochs with a factor 0.7 and an early stopping criterion was evaluated on the mean IoU with a patience of 15 epochs. It
is subsequently compared to other recent work in this field (DeepLabV3+ architecture10), in terms of mean Intersection over
Union (IoU) and processing time. Inference in the application pipeline requires conversion to ONNX and subsequent TensorRT
optimization‡. This optimization allows for smaller precision, reduced latency and model size, simplified network topology,
reduced read and write operations, and dynamic memory allocation to reduce memory footprint. This type of optimization is
necessary to meet the real-time needs during surgery. A side-by-side performance comparison of both architectures is performed
for both the original Pytorch model as well as the final implemented TensorRT model. Both are evaluated for Floating Point(FP)
16 and FP32 precision.

‡ NVIDIA TensorRT: https://developer.nvidia.com/tensorrt
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2.2 Pipeline deployment

2.2.1 Hardware framework

This integration addresses delays imposed by different serial components whilst enabling the implementation of more accurate
but also heavier deep learning networks for image segmentation. The Nvidia Clara AGX developer kit§¶ (Nvidia, Santa Clara,
California, USA) was identified as embedded computing architecture for highly demanding video processing applications.
Live video capture was enabled through a Deltacast DELTA-12G-elp-key capture card# (Deltacast, Liege, Belgium). The card
provides performance and efficient I/O, as well as a passive bypass, which safeguards original video throughput in case of
real-time software malfunctioning.

2.2.2 Software framework

The intra-operative AI & AR application was developed using the NVIDIA Holoscan SDK∥, an extensible open-source framework
for implementing real-time, low-latency medical AI applications. The pipeline was implemented through a combination of
existing Holoscan operators, extended with use case tailored ones. Figure 1 displays a schematic overview of the pipeline and
corresponding operators. The pipeline can be divided into four main blocks: pre-processing, inference, post-processing, and
visualization. The 1920x1080p captured frames are reformatted to serve as input to the segmentation model. For every frame, the
alpha-channel information is dropped, black borders are removed and the frame is resized to 512x512 pixels. The color channels
are normalized with means and standard deviations derived from the binary segmentation model training set.

After inference, a sigmoid activation is applied to the 512x512x2 output, yielding a 512x512 pixels binary mask indicat-
ing whether the corresponding pixels make up non-organic items or soft tissue. The 512x512 pixels segmentation mask is
subsequently resized to match the original input resolution. The 3D model is rendered through VTK∗∗ and composited with
the live full-quality surgical video and segmentation mask to create the final image. The 3D models are manually segmented
pre-operatively using Mimics (Materialise, Leuven, Belgium) from a 4-phasic CT scan sequence14. The models consist of
separate STL files for different structures like parenchyma, tumors, stents, arteries, veins, and other anatomical entities relevant
to the procedure (figure 4f). All STL files can be toggled with hot-keys during overlay and the transparency can be edited in
real-time. The 3D model requires manual alignment with the surgical scene as can be seen in figure 2a.

F I G U R E 1 Schematic overview of the different steps and GXF-extensions in the segmentation application.

§ NVIDIA Developer Kits for medical devices: https://www.nvidia.com/en-gb/clara/intelligent-medical-instruments/
¶ Clara AGX Product Brief with Technical details: https://resources.nvidia.com/en-us-enabling-smart-hospitals-ai-ep/nvidia-clara-agx-dev?lx=KWlJE5&xs=301547
# DELTA-12G-ELP-KEY 11 details: https://www.deltacast.tv/products/developer-products/sdi-capture-cards/delta-12g-elp-key-11
∥ Holoscan SDK: https://github.com/nvidia-holoscan/holoscan-sdk
∗∗ Visualization Toolkit (VTK): https://vtk.org/
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2.3 Live surgeries

The study was performed with patient consent under institutional review board approval (B6702020000442). Figure 2 displays
the operating room setup during the live RAPN procedure. The DELTA-12G-elp-key capture card, which is integrated into the
Holoscan box, receives the live video feed through SDI. The patient-specific 3D model was preloaded onto the Clara AGX
developer kit for rendering inside the Holoscan application. The processed frames were sent over DisplayPort-out into an
active HDMI-splitter. One of both HDMI-out signals was sent to a monitor through which the users could continuously interact
with the application. The other signal was fed back with an HDMI-DVI cable into the Intuive Xi robotic system (Intuitive,
California, USA) by means of the DVI-TilePro-input (figure 2c). As such, whenever the surgeon enables the TilePro feature, the
AR-enhanced video is displayed in parallel to the surgical view and it is already perfectly aligned. Furthermore, a keyboard and
mouse were connected to the Clara AGX developer kit to be able to manipulate and interact with the 3D model as discussed
above. Figure 2a shows the physical experiment setup during the in-human procedure in the operating theatre. The Clara AGX
developer kit and other hardware were installed next to the surgical tower, allowing continuous model alignment during the
procedure and direct communication between the user and the surgeon whenever needed.

(a) Urologist performing 3D model alignment (b) Video link to live demonstration.

(c) Schematic overview of hardware setup

F I G U R E 2 Experiment setup overview. Figure 2a shows the physical setup of the Clara AGX developer kit next to the
surgical tower, while a second urologist performs the real-time model alignment in dialog with the operating urologist. Figure 2c
illustrates a schematic overview of the hardware setup and types of connections.
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3 RESULTS

3.1 Non-organic binary segmentation

T A B L E 1 Performance comparison of (TensorRT optimized) DeepLabV3+ and FPN segmentation model architectures evaluated on Pytorch container.

mean IoU Inference time (ms) ∆ IoU ∆ inference time (ms)

Model Precision Pytorch TensorRT Pytorch TensorRT Pytorch TensorRT Pytorch TensorRT

DEEPLAB FP32 0.90318 0.90318 48.6 20.4 N/A 0 N/A -28.2
DEEPLAB FP16 0.90317 0.90316 52.6 8.5 -0.00001 -0.00002 4 -40.1

FPN FP32 0.94621 0.94621 36 14.2 0.04303 0.04303 -12.6 -34.4
FPN FP16 0.94621 0.94623 40.5 5.1 0.04303 0.04305 -8.1 -43.5

Table 1 summarizes the comparison of evaluation metrics of the FPN model versus the DeepLabV3+ model10 on an identical test
set of 1345 images derived from 4 distinct RAPN procedures. The baseline model for the reported side-by-side improvements
is the DeepLabV3+ with FP32 precision, implemented in Pytorch. The ∆ mean IoU and ∆ inference time reflect stepwise
improvements in segmentation quality and inference time, with respect to this baseline. Changing the model architecture to
FPN resulted in increased mean IoU whilst TensorRT optimization significantly reduced inference times, with the largest time
reduction for FP16 precision. Figure 3 provides an example of the improvement in segmentation quality in TensorRT. When
compared to DeepLabV3+, the FPN model reduced both false positive and false negative pixel regions (respectively represented
by red and green regions). Switching to FP16 has no effect on segmentation performance for both FPN and DeepLabV3+
architectures. The TensorRT FPN model with FP16 precision was identified as the most promising network for the live experiment.
To profile the application pipeline, the Nvidia Nsight Sytems profiling tool†† was used. The experiments were run over 20
seconds at an input frame rate of 80 frames per second. The resulting median processing time for the application pipeline was
less than 13ms with an average GPU utilization of 42%. As such, the device still has GPU bandwidth for additional workloads15.

(a) original image (b) DeepLabV3+ FP16 (c) DeepLabV3+ FP32 (d) FPN FP16 (e) FPN FP32

F I G U R E 3 Segmentation performance of DeepLabV3+ and FPN models (TensorRT optimized). The yellow regions indicate
true positive pixels, the red regions indicate false positive pixels and the green regions indicate false negative pixels.

†† NVIDIA Nsight Systems: https://docs.nvidia.com/nsight-systems/index.html



6 J. Hofman, P. De Backer ET AL.

3.2 Live demonstration and user feedback

Figure 2b shows a QR code with a link to a video containing highlighted segments during surgery. During the RAPN, the
application was first enabled after the identification and isolation of the renal artery. The 3D model overlay confirmed the
orientation of the kidney and tumor with respect to the artery, providing initial support for navigation, as well as confirmation
of clamping level with respect to possible earlier bifurcations of the vessel. During this phase both our previous solution10

and current solution were simultaneously visually compared through separate Tile Pro inputs inside the console. The surgeon
(R.D.G) stated a significant improvement in perceived latency, where the latency of the current solution is small enough for
surgical adoption. Thereafter, the AR application was enabled during tumor demarcation. Figure 4b displays the surgeon’s
console view, where the application is used in parallel with the ultrasound probe. The resection margins and tumor depth
estimation is augmented by the 3D model overlay with the segmented endoscopic ultrasound probe on top and as confirmed by
the ultrasound imagery. Figure 4b also illustrates that the application solely served as support next to the endoscopic vision as
not to impair or alter the surgeon’s original vision or decision. The application was not used during the time-critical surgical
phases for renal artery clamping and tumor resection. After tumor resection and arterial unclamping, the application was once
more enabled during renorrhaphy. Figures 4d and 4e illustrate the model’s segmentation performance on suturing needles, wires,
and hem-o-lok clips as other non-organic materials. Finally, figures 4g and 4h illustrate the performance for gauze segmentation
during hemostasis. The 3D setup was experienced as easy to manipulate without prior knowledge by the clinician performing the
alignment (H.V.D.B.). The ability to align the 3D overlay and toggle the tumor visibility added insights regarding localization of
the tumor bed, while the segmentation effectively provided a sense of depth while suturing the renal capsule. Automatic model
alignment was reported to be the major next clinical improvement. The second case entails a robotic removal of a migrated
endovascular stent, placed for a nutcracker syndrome. This stent had migrated into the vena cava inferior causing relapsing
symptoms and danger of further migration towards the right atrium. The stent was removed and vena cava reconstruction with
left renal vein transposition was performed to treat the primary nut cracker syndrome. Figure 4i displays the surgeon’s console
view, with the endoscopic ultrasound depicted in the right lower TilePro window. We note the validation of the stent location,
represented by the oval hyperreflective structure in the top of the ultrasound image. The surgeon (K.D.) confirmed that the
delay was negligible and acceptable for surgery, and that the AR Tile Pro input was sufficiently informative and responsive to
even be used as the main screen during this phase of the surgery. Finally, the AR pipeline was applied during a robotic liver
metastasectomy. Figure 4j shows the surgeon’s console view where tumor demarcation and 3D model alignment are again
validated using ultrasound. The surgeon (M.D.) stated that, although this setup solves the delay and de-occlusion problem, the
application is not yet applicable in liver surgery due to the organ’s deformative nature which complicates 3D model alignment.
As for the first case, automatic model alignment with extension to deformable registration was reported to be the next major
clinical improvement. All patients experienced a normal postoperative course and recovery.

3.3 Data availability

The segmentation algorithm, and the real-time holoscan application are publicly available for non-commercial use under the
Creative Commons Attribution CC-BY-NC-SA 4.0 at https://github.com/nvidia-holoscan/holohub. Due to privacy restrictions,
the datasets used in the present work cannot be publicly shared. If readers want to use this algorithm, they must cite this article
or acknowledge Orsi Academy and the primary authors, Jasper Hofman and Pieter De Backer.

4 CONCLUSION AND FUTURE WORK

This work presents the implementation of a robust novel real-time approach for occlusion handling in surgical AR scenarios. It
shows that AR-induced instrument occlusion is a resolvable issue when integrating software directly in a dedicated hardware
pipeline. Our segmentation algorithm is shown to transfer smoothly across 3 different robot-assisted renal surgeries and the
setup is applicable across Intuitive Xi systems, as shown in three different testing hospitals. Despite being trained only on robot-
assisted partial nephrectomy instrument segmentation, the algorithm seems to generalize well across other surgeries using similar
instruments. This could facilitate towards a broader AR adoption in robotic surgery. The subjective surgical feedback indicated
that the application can bring clinical value to several parts of the procedure and that the delay is acceptable for real-time surgery.
Specific perceived surgical benefits include better insights into tumor localization below the renal surface and corresponding

https://github.com/nvidia-holoscan/holohub
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arterial tree, together with improved tumor delineation due to de-occlusion. The pipeline is built on top of extensible open-source
technologies, allowing to replicate and translate the work to other challenges in computer-assisted intervention (CAI) and
surgical data science (SDS) for real-time adoption in surgery. By solving the long-standing problem of real-time instrument
occlusion, the work is a demonstrator for translational research from lab to operating room. Furthermore, by optimizing compute
resources, a frame latency of less than 13ms and average GPU utilization of 42% was achieved. These results reflect room for the
integration of additional workloads such as parallel deep learning inference pipelines. Future work resides in the implementation
of a parallel soft tissue segmentation pipeline for automatic 3D model alignment, and by extension non-rigid body registration.
The system should be further evaluated on user experience in a more formalized manner, by e.g. constructing a questionnaire
and applying the pipeline in a greater number of surgeries. Other future minor hardware improvements include the use of the
capture card SDI-out to further reduce delays and enable continuous passive bypass for surgical safety.
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(a) AR pipeline applied in three surgeries

(b) Robot console during tumor demarcation in partial nephrectomy
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(c) AR off (d) AR during renorrhaphy:
segmentation off

(e) AR during renorrhaphy:
segmentation on

(f) 3D model (g) AR during hemostasis:
segmentation off

(h) AR during hemostasis:
segmentation on

(i) Robot console during stent localization in endovascular stent removal
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(j) Robot console during tumor demarcation in liver metastasectomy
F I G U R E 4 Illustration of different segmentation scenarios during three live surgeries. Figure 4a shows the AR pipeline ap-
plied in liver metastasectomy, endovascular stent removal and partial nephrectomy, with both enabled and disabled segmentation
to illustrate de-occlusion of non-organic items. Figure 4c displays renorrhaphy after tumor resection with AR inactive. Figures
4j, 4i and 4b show the respective console views during surgery with two Tile Pro inputs. The tumor or stent localization and 3D
model alignment (left) is being validated by the ultrasound probe (right). Figure 4f shows an example of a patient-specific 3D
model. Figures 4d and 4e show the 3D model overlayed with the surgical scene with segmentation off and on respectively to
illustrate segmentation performance on smaller non-organic items. Figures 4g and 4h display respectively segmentation off and
on during the application of surgical hemostatics.
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